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Abstract 

We study the lattice analogues of the Wess-Zumino-Witten (WZW) and Toda conformal field 
theories. We describe discrete versions of the Drinfel’d-Sokolov reduction and the Sugawara con- 
struction for the WZW model, and show how to formulate a perturbation theory in the chiral sector. 
We describe the spaces of integrals of motion of the perturbed theories. We interpret the perturbed 
WZW model in terms of NLS hierarchy and obtain an embedding of this model into the lattice KP 
hierarchy. 
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1. Introduction 

Studying discrete analogues of continuous classical and quantum two-dimensional inte- 
grable theories during the last two decades resulted in lots of new interesting mathematical 
constructions and helped in understanding physics of quantum problems, in which the reg- 
ularization procedure was of great importance. 
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A system with 12 degrees of freedom is integrable, if one can find n conserved quantities. 
Thus, studying the space of the integrals of motion of any system is one of the main steps in 
solving the theory. In a recent series of papers Feigin and Frenkel[28-301 proposed a new 
approach to study integrable systems. They have shown that integrals of motion of classical 
Toda field theories can be interpreted as cohomologies of certain complexes. Moreover, 
they have proved that these cohomologies allow for quantum deformation. 

In the present paper we use Feigin-Frenkel method to calculate the integrals of motion 
of some discrete integrable theories. Special attention is paid to the lattice Wess-Zumino- 
Witten model (WZW) [ 1,2,23] and its integrable perturbations and lattice Toda theories. 

Using cohomological technique, we show how the Drinfel’d-Sokolov [ 161 reduction can 
be derived on the lattice, starting from the analogue of the Wakimoto construction [47]. 

The paper is organized as follows. In Section 2 with a simple example we review the main 
ideas of Feigin-Frenkel approach. In Section 3 we remind the St.-Petersburg definition of 
lattice KM algebra, introduce convenient analogue of the Chevalley basis and describe the 
free fields representation of the lattice WZW model. In Section 4 we describe explicitly 
lattice Drinfel’d-Sokolov reduction and in Section 5 -lattice Sugawaraconstruction. Then in 
Section 6 we study the perturbed lattice WZW model. For the sake of simplicity we restrict 
ourselves with ~12 case. We describe lattice Maxwell-Bloch (MB) system, for which in 
continuous case integrals of motion were calculated recently [4]. We argue that this system 
can be treated as a proper lattice counterpart of the NLS hierarchy. In Section 7 we study the 
connection between lattice NLS and “universal” lattice KP hierarchies. We find that lattice 
NLS hierarchy provides special two-field realization of lattice KP. We also discuss lattice 
analogues of the affine Toda field theories and calculate their integrals of motion. We end 
up with some concluding remarks and review of unresolved questions. 

2. Fe&in-Frenkel approach 

2.1. Continuous Toda theories 

In this section we briefly review the main ideas of the cohomological approach following 
the papers [28-30,331. 

The main object of study is a Hamiltonian formalism for the Toda field theories. It implies 
constructing a Hamiltonian space 35 and a Hamiltonian H such that the system of equations 
of motion can be rewritten in the Hamiltonian form: 

a,u = [U, H)n. (2.1) 

Here { , }= denotes the Poisson structure on the space 3(n) of functions on rr. We are 
interested in finding the integrals of motion for Eq. (2.1). By definition, integral of motion 
Z is an element of the space F(X) satisfying the equation 

[Z, H] = 0. 

It is a conservation law of the Hamiltonian system, defined by Eq. (2.1). 
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This definition does not require H to be an element of Y(X). The Poisson bracket with H 
must be a well-defined linear operator acting from F(n) to some other linear space. Given 
H, one can define the space of integrals of motion of the system (2.1) as the kernel of this 
linear operator. Moreover, if this operator preserves the Poisson structure, then the space of 
integrals of motion is itself a Poisson algebra. 

For the Toda field theory one can choose as a Hamiltonian space, the space Lh of poly- 
nomial functions on a circle with coordinate x with values in the Cartan subalgebra h of 
semisimple algebra g, or in other words, space of differential polynomials in the coordinates 
ui (x) of U(X) E Lg with respect to the basis of the simple roots (oil. Hereafter, we denote 
this space by no. As the space of functions, we take the space Fu of local functionals on 
no. Any such functional can be presented in the form 

F[u(x)l = s P(a), ada>, . . .) dx, 

where P E no. In addition, we can consider the spaces FUi, consisting of functionals of the 
form 

s P@(x), &u(x), . . .)e’#‘ii(x) dx, 

where $i (x) are defined by && (x) = ui (x). The Poisson bracket 550 x & + .&u can be 
extended to a bilinear map .771 x FUi -+ FUi [ 161. This allows to write the Toda equations 

a,aX#i(x, r> = C 
(yi -simple 

@!_2ZQe~~(X~r), ai- simple 

in the desired Hamiltonian form (2.1) as 

a+(x) = (u(x), W. (2.2) 

Here the Hamiltonian H is given by 

(2.3) 

It is an element of ei 3&, and the Poisson bracket with H is a well-defined linear operator, 
acting from EJ to ei &. Thus, the space of integrals of motion of the Toda equation (2.2) 
can be defined as the kernel of the operator UdH = (0, H), or as the intersection of the 
kernels of the operators adQi : .7?j -+ Fai. These operators preserve the Poisson structure 
on .7$ and hence the space of integrals of motion is a Poisson subalgebra of Fe. 

To illustrate the general scheme, consider first the Liouville theory. The space no is 
defined as the space of differential polynomials in variable a,@, Poisson bracket being 
given by [40] 

]aX4(x), a,+(Y)] = 0x - Y). 

Hamiltonian of the theory is H = 0 = J e @(‘) dx E Fl. The goal is to calculate the space 
of local integrals of motion Zc(sZz) defined as the kernel of the linear operator adO = { ??, Q}. 

Due to Jacobi identity, it is closed with respect to Poisson bracket. 
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Feigin and Frenkel have proved in [29] that Zo(sl2) consists of local functionals, defined 
by differential polynomials, depending on a single variable 

T(X) = ;(aX$)2 - a,‘@. 

When stated, this result is obvious, as it is easy to check, that T(x) itself commutes with 
Q, and hence so does any differential polynomial of T. T(x) realize the classical Virasoro 
algebra 

{T(X), T(Y)) = (a,” +22-a: + ad-amx - y). 

For the case of general semisimple Lie algebra the Poisson algebra Zu( g) of local integrals 
of motion has been shown to coincide with the Adler-Gel’fand-Dickey algebra, otherwise 
called classical W-algebra. 

The Drinfel’d-Sokolov reduction [16] allows one to obtain this algebra as the zeroth 
cohomology of the corresponding classical BRST complex. In Section 4 we obtain similar 
results for the lattice model. 

In the case of the afine Toda field theory the Hamiltonian is given by 

fi = H + Qo, (2.4) 

where Qo = l dx e -Ci’i. Referring the reader to the original papers for the details [28,29], 
we just state the answer here. 

The space Zo( g) of local integrals of motion of the Toda theory, associated to an afine 
algebra g, is linearly generated by mutually commuting localfunctionals of degrees equal 
to the exponents of g mod&o the Coxeter number: 

2.2. Lattice Toda theories 

In this section we consider the lattice analogue of the contsruction described in the 
previous section. We consider the lattice Liouville model [5,6,20,25,45], following mainly 
[25]. The space ~0 in that case is the space of finite-difference polynomial functions on a 
discrete circle with coordinate n = 0, 1,2, . . . , N with values in the lattice abelian current 
algebra [22,46], i.e. the space of finite-difference polynomials in the variable un, with the 
Poisson bracket defined as 

(un, urn) = Wm@n,m+l - &?z,n+l). (2.5) 

The space of local functionals Fo is defined through the summation map C : TTO + Fo. 
Any such functional can be presented in the form 

U&II = c P(un, un - Un+l, * . .), 
n 

where P E no. There is also an appropriate lattice counterpart for the field e@(X), which we 
denote a,. Its relation to the current u,, is expressed by the formula 

-1 un = ana,+l. 
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The Poisson bracket for a, has the form 

[a,, a,) = a,a,sign(n - m). (2.6) 

It is easy to see that (2.5) and (2.6) are consistent. 
Lattice Liouville Hamiltonian is defined as H 3 0 = Enan. The space of local integrals 

of motion Zk (sl2) (L for “lattice”) is defined as the kernel of the linear operator ud~, acting 
from Fu to Ft, where Fr is defined as space of local functionals of the form 

Fl = c P(un, un - kzfl, . * .)%I, 
n 

where P E no. 
It has been shown in [25] that Zk(sl2) consists of local functionals, defined by finite- 

difference polynomials, depending on a single variable 

A,, = 
4+1 

(1 + U”)(l + &+1>’ 
(2.7) 

This formula first appeared in the paper [20], where it was considered as a lattice analogue 
of the Miura transformation for the classical Virasoro algebra. A, ‘s form the classical lattice 
Virasoro-Faddeev-Takhtadjan-Volkov (FTV) algebra 

IAn, &+I] = --&z&+1(1 - A, - &+t), 
]A,, An+21 = -&&+1&+2. 

(2.8) 

As in the continuous case, for the lattice Toda theory associated to the semisimple Lie 
algebra g one can prove that the space of local integrals of motion is a Poisson algebra, 
generated by r elements, where r = rank(g). This algebra has a natural interpretation as a 
lattice analogue of the Gelfand-Dickey algebra (see Section 7 for explicit formulae). 

3. Lattice Kac-Moody algebra and WZW model 

3.1. Lattice Kuc-Moody algebra - St.-Petersburg dejhition 

In this section we define the lattice Kac-Moody algebra (LKMA) following the papers 
of the St.-Petersburg group [ 1,2,43]. The following exchange relations were proposed for 
the quantum lattice L-operator (discrete analogue of the Kac-Moody current): 

J(nW(n)2 = R+J(n)2J(n)lR-, 

J(n + 1)1R-J(n)2 = J(n)zJ(n + 1)t. (3.1) 

The standard notations A1 E A @ 1, A2 E 1 18 A are used. R+ and R- = P(R+)-’ P, 
where P is the permutation operator, satisfy quantum Yang-Baxter equation without spectral 
parameter 

R&&R+ =&R&R+ 12 13 23 23 13 12’ 
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For the ~12 case these matrices have the following form 

For further convenience we define an analogue of the Chevalley basis for the LKMA. Instead 
of the matrix form of LKMA (3.1) with current matrix 

J(n) = J(n)11 J(n)12 

J(n)21 J(n)22 > 

with “s/2-constraint”: 

J(n)11 J(n)22 - 4-l J(n)21 J(n)12 = d/2 

we will use the variables 

e n = J12 J22 n n ’ fn = J,21(J,22)-1, h, = (J,22)2 

with exchange relations 

(3.2) 

hnhn+l = q-‘h,+lh,, 
hnen = q-‘e,h,, hnf,, = qfnhn, 

hnen+l = q-‘e,+lh,, hnfn+l = qfn+lhnt 
(3.3) 

enfn = sfnen +4 - 1, [en, fn+ll = -(q - l)q-1’2hn. 

In the quasi-classical limit (4 + 1, with the appropriate scaling of the Poisson brackets) 
one obtains: 

Ihn, hn+l) = -hnhn+l, 
h,e,l = -hen, IL, fn) = hnfn, 

h, en+11 = -hnen+19 {hn, fn+ll = hnfn+l, 
(en, fn) = 1+ enfnt ten, fn+ll = 4. 

(3.4) 

3.2. Lattice Wakimoto construction 

In this section we describe the realization of LKMA in terms of free fields. In continuous 
case there exists such a Fock space realizat&n of 6. It was first obtained for ~iTz>~ by 
Wakimoto [47] and later generalized for sl(n)k by Feigin and Frenkel [27]. More of an 
algebraic approach to the same problem was taken by Bouwknegt et al. [ 121. It has been - 
shown that the Fock-space modules for sl (n) form the complex. The intertwining operators 
that build the complex, realize the action of the V, (n+) on the Fock space. Explicit formulae 
for the intertwining operators (also called Screening Charges (SC)) in terms of free fields 
can also be found in [ 121. 

Below, following the main steps of [12], we present an analogue of the Fock-space 
realization of the LKMA. The Fock space of local fields on the lattice is defined as a space 
of finite-difference zero-degree polynomials of the following variables: 
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- lattice vertex operators at, i = 1,2, . . . , #(simple roots) with exchange relations 

i i 
a?lan+nl = 4 

Aij/2 i a,+,ai, for m 7 0, 

i i+l 
%A = ql/2a~+la~, 

ata,’ = ajai n n, when I i - j 12 2, 
(3.5) 

deg(aA) = CYi, 

where Aij is the Cartan matrix of sl(n). Zero-degree elements (analogues of the Cartan 
currents) are defined as p; E a~(a~+l)-l; 

- lattice /l - y systems, labelled by the positive roots, with exchange relations 

B,“rna = qrnaB; -t q - 1 3 qt; - 1, 

deg(B,a) = deg(fna) = 0, 

where.!$ = 1 +rn,BF.4 
We denote the space of finite-difference poynomials of at, B,” , fna by na. Quite similar 

to the case of Toda theories, considered previously, and in analogy with continuous case 
[ 121, one can define the screening charges Q, acting from rro to rra. Using the language 
of Section 2, the space of local integrals of motion will coincide with LKMA. 

Here we present explicit calculations for the &-case. Relations (3.5) and (3.6) amount 
to: 

Wk+m = 4 
-1 

&+,a, Bnvn = WA +9 - 1 = q&Z - 1. 

Screening operators are given by the formulae 

(3.6) 

Ql E Qa, = Can&, QO E Qcx,, = xa;‘y,, 
n n 

(~1 = (1, -1) is the simple root of s/(2), ao = -(or is the afline root of sz). Qt is 
the single generator of U,n+(sf(2)), and together with Qu they form Chevalley basis of 
U4n+(@)). One finds by direct computation that the combinations 

en = Bn, fn = Yn - 4-1’2Yn-l&zPn-1, hn = pnMn+l, (3.7) 

obey the LKMA in Chevalley basis (3.4). In continuous limit formulae (3.7) coincide with 
the quasi-classical limit of Wakimoto construction [27,47]: 

f(z) = - : YYP : (z) - &G%(z)mz) - ~~Ycz), 

h(z) = 2 : v/9 : (z) + ,/mH(z), 

e(z) = B(z). 

For the first time Wakimoto bosonization on the lattice was proposed in the paper [23], 
where the authors using the similar system of free fields, constructed the lattice analogue of 

4 The exchange relations between 4 and original variables are Be = q(B and rt = q-‘( r. 
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Bernard-Felder cohomology. However, their explicit realization of the LKMA is different 
from the one given by (3.7). 

4. Lattice Drinfel’d-Sokolov reduction 

The Drinfel’d-Sokolov (DS) reduction is known to be the most powerful method of 
constructing W-algebras in continuous field theory. In this section we show, how a version of 
the DS reduction can be realized on the lattice, giving rise to lattice W-algebras. Surprisingly, 
the procedure we are going to present is not much different from its continuous analogue. In 
the rest of this section we will be closely following the excellent review paper [ 131, where 
also the original references on DS reduction can be found. 

In this method one starts with an affine Lie algebra & (in our case with a LKMA), an 
affine subalgebra $ and reduces it by imposing some first order constraints g - x(g) 
on the generators g E 3, where x(g) is some one-dimensional representation of i’. On 
the classical level, which is the only one we consider in this paper, this procedure gives 
Gel’fand-Dickey algebras WE, k] (lattice W-algebras). Let us choose 3 to be the upper 
Bore1 part of &. 

A set of constraints can be imposed by means of the appropriate BRST procedure, and 
the reduced algebra is defined as the cohomology of the BRST operator. 

In this paper we consider only the case of lattice ~12. Denote the generators of this algebra 
through e,, fn , h,, as in Section 3.2. To impose the constraint, we notice that the upper Bore1 
part of lattice ~12 consists of a single element e,, so the constraint is simply e, = 1. To 
implement the BRST procedure, we need to introduce two ghost fields b,, c,, satisfying the 
Poisson algebra 

and anticommutation relations: 

b,b, + bmb, = c,c,,, + cmc,, = b,,cm + c,,,b,, = 0. 

By analogy with the continuous case described in [ 131, we define the BRST operator as 

Q= Qo+Qlt Qo = &en, QI = xcn. 
n n 

It easy to check that Q defines a double complex, i.e. Q2 = Qi = Q: = Qu Qt + Qt Qu = 
0. To calculate the cohomologies of this double complex, we use the spectral sequence 
technique in the same way it is used in the usual DS reduction. The spectral sequence 
terminates on the second step, so that 

HQ(*) = HQ, (HQO(*)h 

The Qu-cohomologies are generated by me fields c, and h, = h, (1 - b,c,)( 1 - 

bn+lcn+l). The Poisson algebra of cn and i, is not free, however, in the Qu-cohomology 
space: there exists a field N,, = cn& - cn+t, satisfying { Qc, N,} = 0. The Poisson algebra 
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factorized by the condition N,, - 0 is isomorphic to the Poisson algebra for lattice “vertex 
operator” a, and lattice U(l)-current p,, = a;’ a,+~ (see Section 3.2 for the definitions). 
Thus, calculation of the Q I- cohomologies of complex Qu(*) reduces to Feigin’s construc- 
tion of the lattice W-algebra [25] (lattice Virasoro or Faddeev-Takhtadjan-Volkov (FTV) 
algebra in our 22-case). We have to find the kernel of the screening operator 

Ql = Can. 
n 

The answer can be found in [25]: 

A, = 
1 

(1 + L)(l + ir,-:,) 

defines the appropriate cohomology class 

{Ql, An) = -fin - fin,, - 0, 

where we defined 

Nil fin = - 
1+i;, 

- 0. 

It is easy to check that & forms FTV algebra 

LL AZ+21 = &An+lhz+2, I&z, in+d = AA+t(-1 + A, + An+,). 

(4.1) 

It is also easy to verify that N,, (and hence fin) form an ideal in the Poisson algebra of c, 
and A,,: 

@,+I, Nnl = -cnNn, (h,, NnZ = hX,t 
6-1, Nnl = k,-d’,,, IN,, Nn) = --(G-I +dNn. 

Now we want to find another cohomological class B,, such that (Q, Bn} = 0, without any 
null-fields on the right-hand side. In other words, B,, should represent the same cohomology 
class of a double complex as A,, does, but on the original phase space, not factorized over the 
condition N,, - 0. In Section 5 we will consider the Sugawara construction as an example 
of such a class. Here we explain how to organize the “improvement” process. The idea of 
construction of the class B,, is to find such corrections to In A, which kill I?,, terms. This can 
be done with the help of a staircase sequence in the double complex. Consider the following 
sequence: 
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0 

where #,, = (_&+t)/(l + i,). After the summation of this (infinite) process one obtains 

lnB, =lnA,+C lxJ 4,” + #+1 or B &I 
n 

= 

In=1 
m (1 - 4rz,)(l - Aln+l> 

It is easy to check that B, satisfies both desired propeties: it commutes with Q = Qu + Q 1 
and obeys the same FTV algebra (4.1) as A,, does. 

5. Lattice Sugawara construction 

In this section we are going to discuss the analogue of the Sugawara construction on 
the lattice. The question of what object is to be considered an analogue of the Sugawara 
element is rather ambiguous. In continuous case the Sugawara stress-energy tensor T(z) = 
C, (J’J’)(z) possesses a number of peculiar properties, and it is not obvious which can be 
taken as the definition. Before proceeding with the calculations, let us make one comment 
concerning the classical case. In continuum, the Sugawara element satisfies the second 
Gel’fand-Dickey Poisson algebra with zero central charge. 5 On the other hand the contin- 
uous limit of FI’V algebra (4.1) reproduces the classical Virasoro algebra with necessarily 
non-zero central term. This makes one believe that the generator of the FIT algebra should 
contain some twisting part in the continuous limit independent of the elements of the under- 
lying algebra it is built of. In the course of DS reduction such a twisted energy-momentum 
appears naturally and is given by 

1 
T(z) = ~ 

2(h + 2) 
: J+J- + J-J+ + ~JOJO : +iaP+ : abc : . (5.1) 

5 In quantum case, however, the central charge becomes non-zero due to quantum corrections. 



308 A. Antonov et al./Joumal of Geometry and Physics 22 (1997) 298-318 

Below we construct such a class Azg which coincides in the continuous limit with (5.1). 
For this purpose we start with 

1 
A,, = 

(1 + bl)(l + hi;,) 

and after summation of a certain staircase process (slightly more complicated than the one 
constructed above) obtain the desired class 

Arg = 1 

(1 + hrl +x,)(1 + h$ + Yd 
(5.2) 

where xn and y,, are net corrections (after summation of a staircase process). The explicit 
form of x,, and y, is as follows: 

x2,, = h2nM;,_, = h2n 
e2n - I .f2n 

h2n+l 
9 Y2tI = s’+ 1 kf” 2n+l = h;n1+le2n+lf2n+lt 

~2~+1 = M2o,+1 = e2n+lf2n+l, Y2n+1 = M:,,, = 
e2n+l .f2n+2 

h2n+l ’ 

Replacing Min_l + Min and MiR+, -+ M:,+, in the above gives another copy of the 
FTV algebra. 

It is easy to see that the field (5.2) obeys FTV algebra (4.1) and in the continuous limit 
(in the leading non-trivial order of a lattice spacing A) reduces to the classical limit of (5.1). 
After suppressing ghost fields (b, = c,, = 0) one obtains twisted lattice Sugawara element. 
Naturally, Apg[b, = c,, = 0] obeys the same FTV algebra. 

6. Perturbed lattice WZW model 

6.1. Formulation of the model 

In this section we describe the construction, to which we refer to as “lattice perturbed 
WZW model!’ having in mind the parallelism with a continuous case [4]. As in Section 3 
we will not construct any Lagrangian perturbation theory, but rather consider Hamiltonian 
perturbation. 

Below we present explicit calculations for the sZ2-case. Consider quasi-classical limit of 
Wakimoto lattice fields (3.6) a,, , Bn, y,,, with following commutation relations: 

Ia,, G+m 1 = anan+m, IYtl3 AlI = Y&l + 1. 

Introduce the Hamiltonian of the lattice perturbed WZW model 

H = EGG, + xa,‘yn. 
n n 

The first part of it 

(6.1) 

(6.2) 
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commutes with quasi-classical e,, fn , h, currents, constructed in quantum case from 

elements a,, /In, y,, by formulae (3.7). 
The second part of Hamiltonian 

can be treated as perturbation. 
Consider the grading of /3 - y - a system 

dega, = 1, dega,’ = -1, deg /I,, = deg y,, = 0. 

According to these rules we have deg Qo = - 1, deg Q 1 = 1. 
Let us introduce the adjoint action as improved Poisson brackets 

adAB := {A, B} - (degA degB)AB. 

With respect to the adjoint action operators Q 1 and Qo satisfy Serre relations for the nilpotent 
part of si2 algebra 

&&Q I = ad& QO = 0. 

We consider the dynamical system with phase space being that of zero-degree poly- 
nomials lattice fields constructed from lattice (/I - y - a)-system and the Hamiltonian 
(6.2). 

Our purpose now is to prove the integrability of this system and calculate the integrals 
of motion (IM), in analogy with the continuous case, considered in [4]. We will also give 
an interpretation of the model in terms of lattice analogues of the NLS hierarchy: 

Let us start from an observation that the field h, is a “zero mode” because it is conserved 
under the system evolution: 

h, = ade(h,) = 0. 

This implies that it is necessary to reduce our dynamical system and exclude the field h,. 
We introduce new lattice fields 

xn = ihan, -1 
Yn=Ynan . 

Corresponding Dirac brackets for these fields (up to a sign change) are: 

(x,, x,]~ = -sign@ - M)x~x,, 

]ya9 Yrn]~ = -sign@ - ~)Y,Y,, 

bn, Y,)D = signh - mhym - &m(l + x,ymh 

(6.3) 

In these variables Hamiltonian has the form 

H = C(G +yn). 
n 

Poisson algebra (6.3) strongly reminds that of from the Feigin-Enriquez model (FE) [26]. 
The only difference is the S,,,,, term in x - y sector. This central term changes IM and 
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dynamics drastically. Nevertheless, cohomological structure of the space of IM appears to 
be rigid with respect to such a deformation of Poisson brackets, as we are going to show 
now. 

Consider the following one-parameter deformation of the Poisson structure of FE model: 

{x,, X~]D = -sign(n - m)x,x,, 
(yn, ~~10 = -sign@ - ~)Y,Y,, (6.4) 
ix,, h)D = sign@ - m)x,y, - &,(A f x,y,) 

with Hamiltonian 

H=Q++Q-, 

where Q+ = C, x,, and Q- = C, y,,. For the lattice variables x,, and y,, we have 

degx, = 1, deg yn = -1. 

For h = 0 we obtain FE model and for A = 1 we come to our initial algebra (6.3) corre- 
sponding to perturbed lattice WZW ( or lattice NLS) model. It should be mentioned that all 
the Poisson algebras .A* defined by bracket (6.4) are pairwise isomorphic for A E (0, 00). 

In the paper [26] IM for the system (6.4) for h = 0 have been expressed in terms 
of cohomology classes. Standard arguments give that the ring of cohomologies does not 
change under the infinitesimal variation of basic algebraic structure (6.4) on the phase space. 
The isomorphism of algebras dk#o allows us to replace an infinitesimal deformation by 
the finite one. Thus, the rings of cohomologies for FE model and perturbed lattice WZW 
model are the same. 

6.2. Interpretation of the model in terms of the NLS hierarchy 

Before the systematic study of IM we give a brief description of our model in terms of 
lattice analogue of the NLS hierarchy. Let us first change the notations from x,, y,, to the 
standard ones adopted in the theory of NLS equation: x,, = @,,, y,, = $,,. We find that 
Eqs. (6.3) are exactly the first Poisson structure of the lattice NLS hierarchy: 

This bracket can be represented as a sum of two compatible Poisson structures, ( , ) = 
{, )I+(, }o,where(, ]tisdefinedas 
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and ( , ]o is defined as 

]+/n, h+110 = 1. 

311 

One can easily find the first two integrals of the hierarchy 

Zo = C Zn (1 + &&A ZI = c (&&z+t). 
n n 

Two compatible brackets and two integrals of motion define a bi-Hamiltonian system, and 
hence, an infinite family of conservation laws. In continuous limit the few first IMs become 

Zu + N (number of particles), 

It - Zu --f P (momentum), 

12 - 211 + IO + (NLS Hamiltonian), 

where 

12 = c 
n 

7. Embedding of the lattice NLS hierarchy into the lattice KP hierarchy 

7.1. Lattice Toda theories and lattice analogue of the non-linear W, algebra 

We briefly remind here, how Feigin’s construction of lattice WN-algebra can be extended 
to the case of N = 00 [B]. We consider here only the classical case. 

Consider the set of lattice variables (a~}j~zI with the Poisson structure 

[af, a;} = sign(m - n)aLaL, 

(a;, aL+,“, = AaLa;+‘, (a;, a;+‘) = -isign(m - n)aLaL+‘. 
(7.1) 

Following the general scheme, we define the gradation on the phase space: 

deg(ah) = 1, deg((aL)-I)=-1 i=l,...,N-1. 

Let Z7, be the space of the finite-difference polynomials of degree n. The Hamiltonian of 
the lattice Toda theory associated with the finite-dimensional Lie algebra sl (n) is given by 

n-1 

H sl, Toda = c Qi, 
i=l 

(7.2) 

where Qi = c,af are the corresponding screening charges (SC). Through the tedious but 
straightforward calculation one can see that Qi satisfy Serre’s relations in n+(sl(n)). The 
space of the integrals of motion is given by the intersection of the kernels 

N-l 

Ilattice = n Ker(adQ,) f~ no. 
i=l 

(7.3) 
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It forms a Poisson algebra which can be viewed as a proper lattice analogue of the Adler- 
Gel’fand-Dickey, or WN, algebra. We will denote this algebra as L WN. In the papers 
[7,8,42] explicit calculations have been done for the s/(3) case. In general, it was shown 
to be spanned by N - 1 generators L, c Wj2’, W,f3’, . . . , WAN’. Inductive limit N -+ cc 
gives the lattice analogue of the classical non-linear W,-algebra. 

To construct the generators W,“’ we will use more convenient variables than LZ~. First of 
all, we exclude the non-zero degree components of the phase space by using as the basic 
variables the lattice analogues of the Cartan currents of SUN, associated with simple roots 
Dll, LY2, . . .: 

-1 
p; = a;@;+,> . 

Calculations with these variables turned out to be rather tedious [7], so this time we choose 
another basis in the root system of SfN and use Weyl chamber generators (~1, (~1 + cr2, 
(.yt + cX2 + CY3,. . .: 

(7.4) 

kc-’ = pip;. . . p,N-‘. 

The following combinations turn out to be the best for our purposes: 

N-l 

ct; = c $9 
i=l 
N-l N-l 

,-+c ‘c k;k;l’+,, 
i=l j=i+l 

where the summation goes over all possible sets (U (I)) such that N - 1 > u (I + I) > u(E) > 
1. They form a quadratic Poisson algebra 

C&Y a;+, 11 = e,P” h4~:+m + %I 
q+ma!p-m 

n+m )> (7.5) 

where t9Lq = e(p - m)O(q - p + m - 1) and 19(x) is a step function 

e(x) = 1 1, x20, 
0, x < 0. 

The index 1 of the bracket indicates that this is the analogue of first Gel’fand-Dickey 
(GD) structure for the N-KdV hierarchy. Generators of LWN form the analogue of the 
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second GD structure. It turns out that quite parallel to the continuous case there are Miura 
transformation, relating the a-fields (7.5) with the generators of L WN . Direct calculation 
(the most convincing method of proof) shows that the following fields commute with all 
screening operators (i = 2, 3, . . . , N): 

w”’ - 
cx;;: + c$ 

?l- (l+~~)...(l+cY~+i_l)’ 
i = 2, 3, . . . N - 1, 

N-l 
w’N’ = %+1 

(l+cr/)...(l+a;+N_,)’ 

(7.6) 

In the limit N + 00 one find the brackets between the fields WC”. Putting WC’) = 1, we 
have 

( w,‘p’ , W,‘“,‘,) = wn’“’ W,((l:,( 1 - w$_, - w;:‘,, - w$+“‘W;f;;~’ 

-W~P+1~Wn(4:m+W,(P~W~4+tm1_, form 5 p, q +m 2 p+ 1, 

Iw,‘p). W,‘“,‘,] = dJ Wj$(-WE*_, + w;Tm+,) 
_wm W(4+l) n n+m-1 - W’P’W(9+‘) form > 1 n n+m - 3 p>m+q+l. 

(w:“‘, wj4:p+l} = - wpw;~p w,(4:p+l - w,‘p+@ 

+w,(p+” w’9’ 
n+p+l + w?)w;p. 

(Wtip’T W~4:p-q}=-W~p’Wn(2:p_q_1 Wz\_9 + W~“‘W$~$,, for p 1 q + 1, 

{Wi’“‘, W,(9)}=-W,(p)Wn(2:pW,(9)+Wn(p+1)W~9) forq 1 p+ 1, (7.7) 

Notice that the bracket (7.7) can be written in the form 

17 h7.7) = 4 ) 11 + I, 12, 

where { , }I is defined by Eq. (7.5). Concluding this section, we would like to highlight 
several points: 
- Distinct from continuous case, for anyfinite N, algebra L WN does not form a subalgebra 

of L Wm. It forms’only a subspace, defined by restriction WC’) = 0 for i 2 N. 

- In continuous case there exists the so-called two-boson realization of KP hierarchy [49], 
in which W,-algebra generators are expressed in terms of two u( 1) currents. Analogous 
construction happens to exist on the lattice. Fields forming Poisson algebra (7.7) can be 
realized in terms of two lattice u( 1) currents [8] u,, = Q,, and u, = r~~+i, commuting as 

I&z, bl+1) = -tntn+1. (7.8) 

- Under properly defined continuous limit the brackets 1 and 2 become the corresponding 
Poisson structures of the KP hierarchy (resp. linear woo and non-linear W, algebras). 
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7.2. Integrable model associated with L W A+, algebra 

Define the affine vertex of & as ai = n/=y’(a$‘. The corresponding 
operator associated with the imaginary root of SIN is 

screening 

Differential d = Qo + Q = c,i”=o Qj may be considered as the Hamiltonian of z-Toda 
system. According to definitions of the work [30], space of integrals of motion of this system 
is defined as an intersection 

Ker(adQ,) fl Ker(adQ,) fl f.. fl Ker(adQ,_,) fI no/a&. (7.9) 

The word integrals is contained in the last intersection because of obvious isomorphism 

Before describing the space (7.9), let us take a look at a simpler problem. It is almost a trivial 
statement, that a system associated with the pair of brackets ( , } 1 and { , )2 is integrable, with 
an infinite number of conservation laws in involution. One just has to have nyo integrals, 
commuting under both brackets. The simplest choice is [7] 

I(‘) = c w(2) ( WC2))2 n ____ 
n ’ 

z(2) = EC 2 
+ w(2) w(2) 

n n+l - w,(j) . 
n 1 

The subsequent procedure is obvious: using the bi-Hamiltonian structure, one can easily 
obtain the whole series of conservation laws in involution by the recursive procedure. The 
answer for any N (essentially, including N = 00) can be found in [8]. We rewrite it here 
for completeness. For a given N, the series is given by 

ZCk) = kTr(,$,,), N (7.10) 

where Lax matrix LN is conveniently defined as 

(&,-’ n,m = &m+l - wC2)6,,, + wC3)8, ,,-I - . . . + (-l)N-l W,(N)8n,m_N+, . n n . 
(7.11) 

Introducing the translation matrix An,m = 6n,m_1 and diagonal matrices W,‘i?, = W/)6,,, 
we can write in compact notations 

,& = A-’ f 1 
1 _ L . A + W(3) . ~2 - . . . + (-l)N-’ WVOAN-1. 

(7.12) 

It really is the L-operator of our dynamical system, because the evolution equations can be 
written in the form 

acN - = [A$‘), CNI, at, (7.13) 
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where A$) = (Cff,.)+. Now let us return to our original problem of description of the space 
(7.9). Obviously, all of the integrals above commute with Q = c,“,OQ~ by construction 
(7.3). In addition, direct calculation shows that they also commute with Qo. Notice that of 
N vertex operators corresponding to z we needed only N L 1 corresponding to simple 
roots to construct L WAN generators and integrals of motion. In principle, we could pick 
up any N - 1 vertex operators, and follow the same steps. Thus, the space of integrals of - 
motion for SIN lattice Toda system can be described in terms of generating functions as 

where RtL, (&) = ~~COZ(S)h~ is the generating function for the conservation laws of the 
lattice N-KdV hierarchy, associated with the roots 
(al, a2,. . . , G, . . . , &,T]. 

7.3. Embedding of the Lattice NLS into the lattice KP hierarchy 

One can prove by direct calculation that evolution of the fields 

M,” = en fn+p 

hnhn+l . . * hn+p-1 

is consistent with the lattice KP hierarchy (7.13) under the identification 

(7.15) 

(~oo)~,~+~ = (-W’M,P+‘. 
Notice, however, that as defined by Eq. (7.15), variables [M:},“=, are not functionally 
independent. There is a set of quadratic relations, such as, e.g. MzMz+l = MzMi+l, 
which may be interpreted as Plucker relations of some Grassmanian. Two independent 
generators of the whole family are M,” and MA, encountered earlier in Section 5. It is easy 
to check that they as well form FTV algebra, under the identification 

A2n = M,o, A2n+l = Mj, 

Thus, one may view the the embedding of the lattice NLS into the lattice KP as a non-Abelian 
two field realization of lattice Kl? 

8. Concluding remarks 

In this paper we have studied the lattice analogues of various conformal theories as well 
as their integrable perturbations. We have found that when described in proper invariant 
terms, many of the well-known continuous constructions have their match on the lattice. 
We have explicitly described for the first time lattice analogues of the DS reduction and 
of the Sugawara construction. In the framework of the lattice WZW the lattice Sugawara 
energy-momentum tensor has been constructed. We have described lattice Maxwell-Bloch 
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system as a “chiral perturbation” of the lattice WZW model by the field of spin one. Evolution 
equations under the integrals of motion of this system have been found to form an integrable 
hierarchy, which is naturally perceived as a lattice analogue of the NLS hierarchy. Finally, 
we have found an embedding of this lattice NLS hierarchy into the lattice KP hierarchy, 
again in complete analogy with the continuous case. 

One of the problem that remained open is giving a geometrical description of the lattice 
MB system using the Lie group cosets, in analogy with continuous case [4]. 

We have described the spaces of IMs for several integrable systems, using Lax represen- 
tation and bi-Hamiltonian structure. It would be extremely interesting to compare the results 
of cohomological [26] and St.-Petersburg [22,33] calculations with our answers. Recently 
Kryukov calculated the first three integrals in the quasi-classical limit of lattice sine-Gordon 
theory [39], using the generating function from the paper of Faddeev and Volkov [22]. Af- 
ter careful comparison, we found that his integrals of motion can be expressed in terms of 
certain linear combinations of ours. 
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