Lattice conformal theories and their integrable perturbations

Alexander Antonov ${ }^{\text {a, }}$, Alexander A. Belov ${ }^{\text {b,2 }}$, Karén Chaltikian ${ }^{\text {c, }}{ }^{\text {3 }}$
${ }^{\text {a }}$ Laboratoire de Physique Théorique et Hautes Energies, Université Pierre et Marie Curie, Tour $161^{\text {er }}$ étage, 4 place Jussieu, 75252 Paris Cedex 05, France
${ }^{\mathrm{b}}$ International Institute for Earthquake Prediction Theory and Mathematical Geophysics, Warshavskoe sh., 79, k. 2, Moscow 113556, Russian Federation
${ }^{\text {c }}$ Department of Physics, Stanford University, Stanford, CA 94305-4060, USA

Received 3 February 1995; revised 23 August 1996

Abstract

We study the lattice analogues of the Wess-Zumino-Witten (WZW) and Toda conformal field theories. We describe discrete versions of the Drinfel'd-Sokolov reduction and the Sugawara construction for the WZW model, and show how to formulate a perturbation theory in the chiral sector. We describe the spaces of integrals of motion of the perturbed theories. We interpret the perturbed WZW model in terms of NLS hierarchy and obtain an embedding of this model into the lattice KP hierarchy.

Subj. Class.: Quantum field theory; Quantum groups
1991 MSC: 17B37, 81R50, 81C99
Keywords: Lattice integrable systems; Quantum groups; Wess-Zumino-Witten model

1. Introduction

Studying discrete analogues of continuous classical and quantum two-dimensional integrable theories during the last two decades resulted in lots of new interesting mathematical constructions and helped in understanding physics of quantum problems, in which the regularization procedure was of great importance.

[^0]A system with n degrees of freedom is integrable, if one can find n conserved quantities. Thus, studying the space of the integrals of motion of any system is one of the main steps in solving the theory. In a recent series of papers Feigin and Frenkel [28-30] proposed a new approach to study integrable systems. They have shown that integrals of motion of classical Toda field theories can be interpreted as cohomologies of certain complexes. Moreover, they have proved that these cohomologies allow for quantum deformation.

In the present paper we use Feigin-Frenkel method to calculate the integrals of motion of some discrete integrable theories. Special attention is paid to the lattice Wess-ZuminoWitten model (WZW) $[1,2,23]$ and its integrable perturbations and lattice Toda theories.

Using cohomological technique, we show how the Drinfel'd-Sokolov [16] reduction can be derived on the lattice, starting from the analogue of the Wakimoto construction [47].

The paper is organized as follows. In Section 2 with a simple example we review the main ideas of Feigin-Frenkel approach. In Section 3 we remind the St.-Petersburg definition of lattice KM algebra, introduce convenient analogue of the Chevalley basis and describe the free fields representation of the lattice WZW model. In Section 4 we describe explicitly lattice Drinfel'd-Sokolov reduction and in Section 5-lattice Sugawara construction. Then in Section 6 we study the perturbed lattice WZW model. For the sake of simplicity we restrict ourselves with $\widehat{s l}_{2}$ case. We describe lattice Maxwell-Bloch (MB) system, for which in continuous case integrals of motion were calculated recently [4]. We argue that this system can be treated as a proper lattice counterpart of the NLS hierarchy. In Section 7 we study the connection between lattice NLS and "universal" lattice KP hierarchies. We find that lattice NLS hierarchy provides special two-field realization of lattice KP. We also discuss lattice analogues of the affine Toda field theories and calculate their integrals of motion. We end up with some concluding remarks and review of unresolved questions.

2. Feigin-Frenkel approach

2.1. Continuous Toda theories

In this section we briefly review the main ideas of the cohomological approach following the papers [28-30,33].

The main object of study is a Hamiltonian formalism for the Toda field theories. It implies constructing a Hamiltonian space π and a Hamiltonian H such that the system of equations of motion can be rewritten in the Hamiltonian form:

$$
\begin{equation*}
\partial_{\tau} U=\{U, H\}_{\pi} \tag{2.1}
\end{equation*}
$$

Here $\{,\}_{\pi}$ denotes the Poisson structure on the space $\mathcal{F}(\pi)$ of functions on π. We are interested in finding the integrals of motion for Eq. (2.1). By definition, integral of motion I is an element of the space $\mathcal{F}(\pi)$ satisfying the equation

$$
\{I, H\}=0
$$

It is a conservation law of the Hamiltonian system, defined by Eq. (2.1).

This definition does not require H to be an element of $\mathcal{F}(\pi)$. The Poisson bracket with H must be a well-defined linear operator acting from $\mathcal{F}(\pi)$ to some other linear space. Given H, one can define the space of integrals of motion of the system (2.1) as the kernel of this linear operator. Moreover, if this operator preserves the Poisson structure, then the space of integrals of motion is itself a Poisson algebra.

For the Toda field theory one can choose as a Hamiltonian space, the space $\boldsymbol{L} \boldsymbol{h}$ of polynomial functions on a circle with coordinate x with values in the Cartan subalgebra h of semisimple algebra \boldsymbol{g}, or in other words, space of differential polynomials in the coordinates $u^{i}(x)$ of $\boldsymbol{u}(x) \in L g$ with respect to the basis of the simple roots $\left\{\alpha_{i}\right\}$. Hereafter, we denote this space by π_{0}. As the space of functions, we take the space \mathcal{F}_{0} of local functionals on π_{0}. Any such functional can be presented in the form

$$
F[u(x)]=\int P\left(u(x), \partial_{x} u(x), \ldots\right) \mathrm{d} x
$$

where $P \in \pi_{0}$. In addition, we can consider the spaces $\mathcal{F}_{\alpha_{i}}$, consisting of functionals of the form

$$
\int P\left(u(x), \partial_{x} u(x), \ldots\right) \mathrm{e}^{\phi_{i}(x)} \mathrm{d} x
$$

where $\phi_{i}(x)$ are defined by $\partial_{x} \phi_{i}(x)=u^{i}(x)$. The Poisson bracket $\mathcal{F}_{0} \times \mathcal{F}_{0} \rightarrow \mathcal{F}_{0}$ can be extended to a bilinear map $\mathcal{F}_{0} \times \mathcal{F}_{\alpha_{i}} \rightarrow \mathcal{F}_{\alpha_{i}}$ [16]. This allows to write the Toda equations

$$
\partial_{\tau} \partial_{x} \phi_{i}(x, \tau)=\sum_{\alpha_{j}-\text { simple }} \frac{\left(\alpha_{i}, \alpha_{j}\right)}{2} \mathrm{e}^{\phi_{j}(x, \tau)}, \quad \alpha_{i}-\text { simple }
$$

in the desired Hamiltonian form (2.1) as

$$
\begin{equation*}
\partial_{\tau} \boldsymbol{u}(x)=\{\boldsymbol{u}(x), H\} \tag{2.2}
\end{equation*}
$$

Here the Hamiltonian H is given by

$$
\begin{equation*}
H=\frac{1}{2} \sum_{i} Q_{i}, \quad Q_{i}=\int \mathrm{e}^{\phi_{i}(x)} \mathrm{d} x \tag{2.3}
\end{equation*}
$$

It is an element of $\bigoplus_{i} \mathcal{F}_{\alpha_{i}}$, and the Poisson bracket with H is a well-defined linear operator, acting from \mathcal{F}_{0} to $\bigoplus_{i} \mathcal{F}_{\alpha_{i}}$. Thus, the space of integrals of motion of the Toda equation (2.2) can be defined as the kernel of the operator $a d_{H} \equiv\{\bullet, H\}$, or as the intersection of the kernels of the operators $a d_{Q_{i}}: \mathcal{F}_{0} \rightarrow \mathcal{F}_{\alpha_{i}}$. These operators preserve the Poisson structure on \mathcal{F}_{0}, and hence the space of integrals of motion is a Poisson subalgebra of \mathcal{F}_{0}.

To illustrate the general scheme, consider first the Liouville theory. The space π_{0} is defined as the space of differential polynomials in variable $\partial_{x} \phi$, Poisson bracket being given by [40]

$$
\left\{\partial_{x} \phi(x), \partial_{y} \phi(y)\right\}=\delta^{\prime}(x-y)
$$

Hamiltonian of the theory is $H=\bar{Q}=\int \mathrm{e}^{\phi(x)} \mathrm{d} x \in \mathcal{F}_{1}$. The goal is to calculate the space of local integrals of motion $I_{0}\left(s l_{2}\right)$ defined as the kernel of the linear operator $a d_{\bar{Q}} \equiv\{\bullet, \bar{Q}\}$. Due to Jacobi identity, it is closed with respect to Poisson bracket.

Feigin and Frenkel have proved in [29] that $I_{0}\left(s l_{2}\right)$ consists of local functionals, defined by differential polynomials, depending on a single variable

$$
T(x)=\frac{1}{2}\left(\partial_{x} \phi\right)^{2}-\partial_{x}^{2} \phi
$$

When stated, this result is obvious, as it is easy to check, that $T(x)$ itself commutes with \bar{Q}, and hence so does any differential polynomial of $T . T(x)$ realize the classical Virasoro algebra

$$
\{T(x), T(y)\}=\left(\partial_{x}^{3}+2 T \partial_{x}^{2}+\partial_{x} T \partial_{x}\right) \delta(x-y)
$$

For the case of general semisimple Lie algebra the Poisson algebra $I_{0}(\boldsymbol{g})$ of local integrals of motion has been shown to coincide with the Adler-Gel'fand-Dickey algebra, otherwise called classical W-algebra.

The Drinfel'd-Sukolov reduction [16] allows one to obtain this algebra as the zeroth cohomology of the corresponding classical BRST complex. In Section 4 we obtain similar results for the lattice model.

In the case of the affine Toda field theory the Hamiltonian is given by

$$
\begin{equation*}
\tilde{H}=H+Q_{0} \tag{2.4}
\end{equation*}
$$

where $Q_{0}=\int \mathrm{d} x \mathrm{e}^{-\sum_{i} \phi_{i}}$. Referring the reader to the original papers for the details [28,29], we just state the answer here.

The space $I_{0}(g)$ of local integrals of motion of the Toda theory, associated to an affine algebra g , is linearly generated by mutually commuting local functionals of degrees equal to the exponents of g modulo the Coxeter number.

2.2. Lattice Toda theories

In this section we consider the lattice analogue of the contsruction described in the previous section. We consider the lattice Liouville model [$5,6,20,25,45$], following mainly [25]. The space π_{0} in that case is the space of finite-difference polynomial functions on a discrete circle with coordinate $n=0,1,2, \ldots, N$ with values in the lattice abelian current algebra $[22,46]$, i.e. the space of finite-difference polynomials in the variable u_{n}, with the Poisson bracket defined as

$$
\begin{equation*}
\left\{u_{n}, u_{m}\right\}=u_{n} u_{m}\left(\delta_{n, m+1}-\delta_{m, n+1}\right) \tag{2.5}
\end{equation*}
$$

The space of local functionals \mathcal{F}_{0} is defined through the summation map $\Sigma: \pi_{0} \rightarrow \mathcal{F}_{0}$. Any such functional can be presented in the form

$$
F\left[u_{n}\right]=\sum_{n} P\left(u_{n}, u_{n}-u_{n+1}, \ldots\right)
$$

where $P \in \pi_{0}$. There is also an appropriate lattice counterpart for the field $\mathrm{e}^{\phi(x)}$, which we denote a_{n}. Its relation to the current u_{n} is expressed by the formula

$$
u_{n}=a_{n} a_{n+1}^{1}
$$

The Poisson bracket for a_{n} has the form

$$
\begin{equation*}
\left\{a_{n}, a_{m}\right\}=a_{n} a_{m} \operatorname{sign}(n-m) \tag{2.6}
\end{equation*}
$$

It is easy to see that (2.5) and (2.6) are consistent.
Lattice Liouville Hamiltonian is defined as $H \equiv \bar{Q}=\sum_{n} a_{n}$. The space of local integrals of motion $I_{0}^{L}\left(s l_{2}\right)$ (L for "lattice") is defined as the kernel of the linear operator $a d_{\bar{Q}}$, acting from \mathcal{F}_{0} to \mathcal{F}_{1}, where \mathcal{F}_{1} is defined as space of local functionals of the form

$$
F_{1}=\sum_{n} P\left(u_{n}, u_{n}-u_{n+1}, \ldots\right) a_{n}
$$

where $P \in \pi_{0}$.
It has been shown in [25] that $I_{0}^{L}\left(s l_{2}\right)$ consists of local functionals, defined by finitedifference polynomials, depending on a single variable

$$
\begin{equation*}
A_{n}=\frac{u_{n+1}}{\left(1+u_{n}\right)\left(1+u_{n+1}\right)} \tag{2.7}
\end{equation*}
$$

This formula first appeared in the paper [20], where it was considered as a lattice analogue of the Miura transformation for the classical Virasoro algebra. A_{n} 's form the classical lattice Virasoro-Faddeev-Takhtadjan-Volkov (FTV) algebra

$$
\begin{align*}
& \left\{A_{n}, A_{n+1}\right\}=-A_{n} A_{n+1}\left(1-A_{n}-A_{n+1}\right), \\
& \left\{A_{n}, A_{n+2}\right\}=-A_{n} A_{n+1} A_{n+2} \tag{2.8}
\end{align*}
$$

As in the continuous case, for the lattice Toda theory associated to the semisimple Lie algebra g one can prove that the space of local integrals of motion is a Poisson algebra, generated by r elements, where $r=\operatorname{rank}(g)$. This algebra has a natural interpretation as a lattice analoguc of the Gelfand-Dickey algebra (see Section 7 for explicit formulae).

3. Lattice Kac-Moody algebra and WZW model

3.1. Lattice Kac-Moody algebra - St.-Petersburg definition

In this section we define the lattice Kac-Moody algebra (LKMA) following the papers of the St.-Petersburg group [$1,2,43$]. The following exchange relations were proposed for the quantum lattice L-operator (discrete analogue of the Kac-Moody current):

$$
\begin{align*}
J(n)_{1} J(n)_{2} & =R^{+} J(n)_{2} J(n)_{1} R^{-}, \\
J(n+1)_{1} R^{-} J(n)_{2} & =J(n)_{2} J(n+1)_{1} . \tag{3.1}
\end{align*}
$$

The standard notations $A_{1} \equiv A \otimes 1, A_{2} \equiv 1 \otimes A$ are used. R^{+}and $R^{-}=P\left(R^{+}\right)^{-1} P$, where P is the permutation operator, satisfy quantum Yang-Baxter equation without spectral parameter

$$
R_{12}^{ \pm} R_{13}^{ \pm} R_{23}^{ \pm}=R_{23}^{ \pm} R_{13}^{ \pm} R_{12}^{ \pm}
$$

For the $s l_{2}$ case these matrices have the following form

$$
R^{+}=q^{1 / 2}\left(\begin{array}{cccc}
q^{-1} & 0 & 0 & 0 \\
0 & 1 & q^{-1}-q & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & q^{-1}
\end{array}\right), \quad R^{-}=q^{-1 / 2}\left(\begin{array}{cccc}
q & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & q-q^{-1} & 1 & 0 \\
0 & 0 & 0 & q
\end{array}\right)
$$

For further convenience we define an analogue of the Chevalley basis for the LKMA. Instead of the matrix form of LKMA (3.1) with current matrix

$$
J(n)=\left(\begin{array}{ll}
J(n)_{11} & J(n)_{12} \\
J(n)_{21} & J(n)_{22}
\end{array}\right)
$$

with " $s l_{2}$-constraint":

$$
J(n)_{11} J(n)_{22}-q^{-1} J(n)_{21} J(n)_{12}=q^{1 / 2}
$$

we will use the variables

$$
\begin{equation*}
e_{n}=J_{n}^{12} J_{n}^{22}, \quad f_{n}=J_{n}^{21}\left(J_{n}^{22}\right)^{-1}, \quad h_{n}=\left(J_{n}^{22}\right)^{2} \tag{3.2}
\end{equation*}
$$

with exchange relations

$$
\begin{array}{rlrl}
h_{n} h_{n+1} & =q^{-1} h_{n+1} h_{n}, & \\
h_{n} e_{n} & =q^{-1} e_{n} h_{n}, & h_{n} f_{n} & =q f_{n} h_{n}, \\
h_{n} e_{n+1} & =q^{-1} e_{n+1} h_{n}, & h_{n} f_{n+1} & =q f_{n+1} h_{n}, \tag{3.3}\\
e_{n} f_{n} & =q f_{n} e_{n}+q-1, & {\left[e_{n}, f_{n+1}\right]} & =-(q-1) q^{-1 / 2} h_{n} .
\end{array}
$$

In the quasi-classical limit ($q \rightarrow 1$, with the appropriate scaling of the Poisson brackets) one obtains:

$$
\begin{array}{rlrlrl}
\left\{h_{n}, h_{n+1}\right\} & =-h_{n} h_{n+1}, & & \\
\left\{h_{n}, e_{n}\right\} & =-h_{n} e_{n}, & & \left\{h_{n}, f_{n}\right\} & =h_{n} f_{n}, \tag{3.4}\\
\left\{h_{n}, e_{n+1}\right\} & =-h_{n} e_{n+1}, & & \left\{h_{n}, f_{n+1}\right\} & =h_{n} f_{n+1}, \\
\left\{e_{n}, f_{n}\right\} & =1+e_{n} f_{n}, & & \left\{e_{n}, f_{n+1}\right\} & =-h_{n} .
\end{array}
$$

3.2. Lattice Wakimoto construction

In this section we describe the realization of LKMA in terms of free fields. In continuous case there exists such a Fock space realization of $\hat{\mathcal{G}}$. It was first obtained for $\overline{s l(2)})_{1}$ by Wakimoto [47] and later generalized for $s \widehat{l(n)}_{k}$ by Feigin and Frenkel [27]. More of an algebraic approach to the same problem was taken by Bouwknegt et al. [12]. It has been shown that the Fock-space modules for $\widehat{s l(n)}$ form the complex. The intertwining operators that build the complex, realize the action of the $U_{q}\left(n_{+}\right)$on the Fock space. Explicit formulae for the intertwining operators (also called Screening Charges (SC)) in terms of free fields can also be found in [12].

Below, following the main steps of [12], we present an analogue of the Fock-space realization of the LKMA. The Fock space of local fields on the lattice is defined as a space of finite-difference zero-degree polynomials of the following variables:

- lattice vertex operators $a_{n}^{i}, i=1,2, \ldots, \#$ (simple roots) with exchange relations

$$
\begin{align*}
a_{n}^{i} a_{n+m}^{j} & =q^{A_{i j} / 2} a_{n+m}^{j} a_{n}^{i}, \quad \text { for } m>0 \\
a_{n}^{i} a_{n}^{i+1} & =q^{1 / 2} a_{n}^{i+1} a_{n}^{i}, \\
a_{n}^{i} a_{n}^{j} & =a_{n}^{j} a_{n}^{i}, \quad \text { when }|i-j| \geq 2 \tag{3.5}\\
\operatorname{deg}\left(a_{n}^{i}\right) & =\alpha_{i},
\end{align*}
$$

where $A_{i j}$ is the Cartan matrix of $s l(n)$. Zero-degree elements (analogues of the Cartan currents) are defined as $p_{n}^{i} \equiv a_{n}^{i}\left(a_{n+1}^{i}\right)^{-1}$;

- lattice $\beta-\gamma$ systems, labelled by the positive roots, with exchange relations

$$
\begin{aligned}
& B_{n}^{\alpha} \Gamma_{n}^{\alpha}=q \Gamma_{n}^{\alpha} B_{n}^{\alpha}+q-1 \equiv q \xi_{n}^{\alpha}-1 \\
& \operatorname{deg}\left(B_{n}^{\alpha}\right)=\operatorname{deg}\left(\Gamma_{n}^{\alpha}\right)=0
\end{aligned}
$$

where $\xi_{n}^{\alpha}=1+\Gamma_{n}^{\alpha} B_{n}^{\alpha} .{ }^{4}$
We denote the space of finite-difference poynomials of $a_{n}^{i}, B_{n}^{\boldsymbol{\alpha}}, \Gamma_{n}^{\boldsymbol{\alpha}}$ by π_{α}. Quite similar to the case of Toda theories, considered previously, and in analogy with continuous case [12], one can define the screening charges Q_{α} acting from π_{0} to π_{α}. Using the language of Section 2, the space of local integrals of motion will coincide with LKMA.

Here we present explicit calculations for the $s l_{2}$-case. Relations (3.5) and (3.6) amount to:

$$
\begin{equation*}
a_{n} a_{n+m}=q^{-1} a_{n+m} a_{n} \quad \beta_{n} \gamma_{n}=q \gamma_{n} \beta_{n}+q-1 \equiv q \xi_{n}-1 . \tag{3.6}
\end{equation*}
$$

Screening operators are given by the formulae

$$
Q_{1} \equiv Q \alpha_{1}=\sum_{n} a_{n} \beta_{n}, \quad Q_{0} \equiv Q \hat{\alpha}_{0}=\sum_{n} a_{n}^{-1} \gamma_{n}
$$

 the single generator of $U_{q} n_{+}(s l(2))$, and together with Q_{0} they form Chevalley basis of $U_{q} n_{+}(\widehat{s l(2)})$. One finds by direct computation that the combinations

$$
\begin{equation*}
e_{n}=\beta_{n}, \quad f_{n}=\gamma_{n}-q^{-1 / 2} \gamma_{n-1} \xi_{n} p_{n-1}, \quad h_{n}=p_{n} \xi_{n} \xi_{n+1} \tag{3.7}
\end{equation*}
$$

obey the LKMA in Chevalley basis (3.4). In continuous limit formulae (3.7) coincide with the quasi-classical limit of Wakimoto construction [27,47]:

$$
\begin{aligned}
& f(z)=-: \gamma \gamma \beta:(z)-\sqrt{2(k+2)} \gamma(z) H(z)-k \partial \gamma(z) \\
& h(z)=2: \gamma \beta:(z)+\sqrt{2(k+2)} H(z) \\
& e(z)=\beta(z)
\end{aligned}
$$

For the first time Wakimoto bosonization on the lattice was proposed in the paper [23], where the authors using the similar system of free fields, constructed the lattice analugue of

[^1]Bernard-Felder cohomology. However, their explicit realization of the LKMA is different from the one given by (3.7).

4. Lattice Drinfel'd-Sokolov reduction

The Drinfel'd-Sokolov (DS) reduction is known to be the most powerful method of constructing W-algebras in continuous field theory. In this section we show, how a version of the DS reduction can be realized on the lattice, giving rise to lattice W-algebras. Surprisingly, the procedure we are going to present is not much different from its continuous analogue. In the rest of this section we will be closely following the excellent review paper [13], where also the original references on DS reduction can be found.

In this method one starts with an affine Lie algebra $\hat{\boldsymbol{g}}_{k}$ (in our case with a LKMA), an affine subalgebra $\hat{\boldsymbol{g}}^{\prime}$ and reduces it by imposing some first order constraints $g \sim \chi(g)$ on the generators $g \in \hat{\boldsymbol{g}}^{\prime}$, where $\chi(g)$ is some one-dimensional representation of $\hat{\boldsymbol{g}}^{\prime}$. On the classical level, which is the only one we consider in this paper, this procedure gives Gel'fand-Dickey algebras $W[\hat{g}, k]$ (lattice W-algebras). Let us choose $\hat{\boldsymbol{g}}^{\prime}$ to be the upper Borel part of $\hat{\boldsymbol{g}}_{k}$.

A set of constraints can be imposed by means of the appropriate BRST procedure, and the reduced algebra is defined as the cohomology of the BRST operator.

In this paper we consider only the case of lattice $s l_{2}$. Denote the generators of this algebra through e_{n}, f_{n}, h_{n}, as in Section 3.2. To impose the constraint, we notice that the upper Borel part of lattice $s l_{2}$ consists of a single element e_{n}, so the constraint is simply $e_{n}=1$. To implement the BRST procedure, we need to introduce two ghost fields b_{n}, c_{n} satisfying the Poisson algebra

$$
\left\{b_{n}, c_{m}\right\}=\delta_{n m}
$$

and anticommutation relations:

$$
b_{n} b_{m}+b_{m} b_{n}=c_{n} c_{m}+c_{m} c_{n}=b_{n} c_{m}+c_{m} b_{n}=0
$$

By analogy with the continuous case described in [13], we define the BRST operator as

$$
Q=Q_{0}+Q_{1}, \quad Q_{0}=\sum_{n} c_{n} e_{n}, \quad Q_{1}=\sum_{n} c_{n}
$$

It easy to check that Q defines a double complex, i.e. $Q^{2}=Q_{0}^{2}=Q_{1}^{2}=Q_{0} Q_{1}+Q_{1} Q_{0}=$ 0 . To calculate the cohomologies of this double complex, we use the spectral sequence technique in the same way it is used in the usual DS reduction. The spectral sequence terminates on the second step, so that

$$
H_{Q}(*) \simeq H_{Q_{1}}\left(H_{Q_{0}}(*)\right)
$$

The Q_{0}-cohomologies are generated by the fields c_{n} and $\tilde{h}_{n}=h_{n}\left(1-b_{n} c_{n}\right)(1-$ $b_{n+1} c_{n+1}$). The Poisson algebra of c_{n} and \tilde{h}_{n} is not free, however, in the Q_{0}-cohomology space: there exists a field $N_{n}=c_{n} \tilde{h}_{n}-c_{n+1}$, satisfying $\left\{Q_{0}, N_{n}\right\}=0$. The Poisson algebra
factorized by the condition $N_{n} \sim 0$ is isomorphic to the Poisson algebra for lattice "vertex operator" a_{n} and lattice $U(1)$-current $p_{n}=a_{n}^{-1} a_{n+1}$ (see Section 3.2 for the definitions). Thus, calculation of the Q_{1} - cohomologies of complex $Q_{0}(*)$ reduces to Feigin's construction of the lattice W-algebra [25] (lattice Virasoro or Faddeev-Takhtadjan-Volkov (FTV) algebra in our $\widehat{s l}_{2}$-case). We have to find the kernel of the screening operator

$$
Q_{1}=\sum_{n} a_{n}
$$

The answer can be found in [25]:

$$
\tilde{A}_{n}=\frac{1}{\left(1+\tilde{h}_{n}\right)\left(1+\tilde{h}_{n+1}^{-1}\right)}
$$

defines the appropriate cohomology class

$$
\left\{Q_{1}, \tilde{A}_{n}\right\}=-\hat{N}_{n}-\hat{N}_{n+1} \sim 0
$$

where we defined

$$
\hat{N}_{n}=\frac{N_{n}}{1+\tilde{h}_{n}} \sim 0
$$

It is easy to check that \tilde{A}_{n} forms FTV algebra

$$
\begin{equation*}
\left\{\tilde{A}_{n}, \tilde{A}_{n+2}\right\}=\tilde{A}_{n} \tilde{A}_{n+1} \tilde{A}_{n+2}, \quad\left\{\tilde{A}_{n}, \tilde{A}_{n+1}\right\}=\tilde{A}_{n} \tilde{A}_{n+1}\left(-1+\tilde{A}_{n}+\tilde{A}_{n+1}\right) \tag{4.1}
\end{equation*}
$$

It is also easy to verify that N_{n} (and hence \hat{N}_{n}) form an ideal in the Poisson algebra of c_{n} and \tilde{h}_{n} :

$$
\begin{array}{ll}
\left\{c_{n+1}, N_{n}\right\}=-c_{n} N_{n}, & \left\{\tilde{h}_{n}, N_{n}\right\}=\tilde{h}_{n} N_{n} \\
\left\{\tilde{h}_{n-1}, N_{n}\right\}=\tilde{h}_{n-1} N_{n}, & \left\{N_{n}, N_{n}\right\}=-\left(c_{n-1}+c_{n}\right) N_{n}
\end{array}
$$

Now we want to find another cohomological class B_{n} such that $\left\{Q, B_{n}\right\}=0$, without any null-fields on the right-hand side. In other words, B_{n} should represent the same cohomology class of a double complex as A_{n} does, but on the original phase space, not factorized over the condition $N_{n} \sim 0$. In Section 5 we will consider the Sugawara construction as an example of such a class. Here we explain how to organize the "improvement" process. The idea of construction of the class B_{n} is to find such corrections to $\ln \tilde{A}_{n}$ which kill \hat{N}_{n} terms. This can be done with the help of a staircase sequence in the double complex. Consider the following sequence:

0

where $\phi_{n}=\left(\tilde{f}_{n+1}\right) /\left(1+\tilde{h}_{n}\right)$. After the summation of this (infinite) process one obtains

$$
\ln B_{n}=\ln \tilde{A}_{n}+\sum_{m=1}^{\infty} \frac{\phi_{n}^{m}+\phi_{n+1}^{m}}{m} \quad \text { or } \quad B_{n}=\frac{\tilde{A}_{n}}{\left(1-\phi_{n}\right)\left(1-\phi_{n+1}\right)}
$$

It is easy to check that B_{n} satisfies both desired propeties: it commutes with $Q=Q_{0}+Q_{1}$ and obeys the same FTV algebra (4.1) as \tilde{A}_{n} does.

5. Lattice Sugawara construction

In this section we are going to discuss the analogue of the Sugawara construction on the lattice. The question of what object is to be considered an analogue of the Sugawara element is rather ambiguous. In continuous case the Sugawara stress-energy tensor $T(z)=$ $\sum_{a}\left(J^{a} J^{a}\right)(z)$ possesses a number of peculiar properties, and it is not obvious which can be taken as the definition. Before proceeding with the calculations, let us make one comment concerning the classical case. In continuum, the Sugawara element satisfies the second Gel'fand-Dickey Poisson algebra with zero central charge. ${ }^{5}$ On the other hand the continuous limit of FTV algebra (4.1) reproduces the classical Virasoro algebra with necessarily non-zero central term. This makes one believe that the generator of the FTV algebra should contain some twisting part in the continuous limit independent of the elements of the underlying algebra it is built of. In the course of DS reduction such a twisted energy-momentum appears naturally and is given by

$$
\begin{equation*}
T(z)=\frac{1}{2(h+2)}: J^{+} J^{-}+J^{-} J^{+}+\frac{1}{2} J^{0} J^{0}:+\frac{1}{2} \partial J^{0}+: \partial b c: . \tag{5.1}
\end{equation*}
$$

[^2]Below we construct such a class $A_{n}^{\text {sug }}$ which coincides in the continuous limit with (5.1).
For this purpose we start with

$$
A_{n}=\frac{1}{\left(1+h_{n}\right)\left(1+h_{n+1}^{-1}\right)}
$$

and after summation of a certain staircase process (slightly more complicated than the one constructed above) obtain the desired class

$$
\begin{equation*}
A_{n}^{\mathrm{sug}}=\frac{1}{\left(1+h_{n}+x_{n}\right)\left(1+h_{n+1}^{-1}+y_{n}\right)} \tag{5.2}
\end{equation*}
$$

where x_{n} and y_{n} are net corrections (after summation of a staircase process). The explicit form of x_{n} and y_{n} is as follows:

$$
\begin{aligned}
& x_{2 n}=h_{2 n} M_{2 n-1}^{1} \equiv h_{2 n} \frac{e_{2 n-1} f_{2 n}}{h_{2 n+1}}, \quad y_{2 n}=h_{2 n+1}^{-1} M_{2 n+1}^{0} \equiv h_{2 n+1}^{-1} e_{2 n+1} f_{2 n+1} \\
& x_{2 n+1}=M_{2 n+1}^{0} \equiv e_{2 n+1} f_{2 n+1}, \quad y_{2 n+1}=M_{2 n+1}^{1} \equiv \frac{e_{2 n+1} f_{2 n+2}}{h_{2 n+1}}
\end{aligned}
$$

Replacing $M_{2 n-1}^{1} \rightarrow M_{2 n}^{0}$ and $M_{2 n+1}^{0} \rightarrow M_{2 n+1}^{1}$ in the above gives another copy of the FTV algebra.

It is easy to see that the field (5.2) obeys FTV algebra (4.1) and in the continuous limit (in the leading non-trivial order of a lattice spacing Δ) reduces to the classical limit of (5.1). After suppressing ghost fields ($b_{n}=c_{n}=0$) one obtains twisted lattice Sugawara element. Naturally, $A_{n}^{\text {sug }}\left[b_{n}=c_{n}=0\right]$ obeys the same FTV algebra.

6. Perturbed lattice WZW model

6.1. Formulation of the model

In this section we describe the construction, to which we refer to as "lattice perturbed WZW model" having in mind the parallelism with a continuous case [4]. As in Section 3 we will not construct any Lagrangian perturbation theory, but rather consider Hamiltonian perturbation.

Below we present explicit calculations for the $s l_{2}$-case. Consider quasi-classical limit of Wakimoto lattice fields (3.6) $a_{n}, \beta_{n}, \gamma_{n}$, with following commutation relations:

$$
\begin{equation*}
\left\{a_{n}, a_{n+m}\right\}=a_{n} a_{n+m}, \quad\left\{\gamma_{n}, \beta_{n}\right\}=\gamma_{n} \beta_{n}+1 \tag{6.1}
\end{equation*}
$$

Introduce the Hamiltonian of the lattice perturbed WZW model

$$
\begin{equation*}
H=\sum_{n} a_{n} \beta_{n}+\sum_{n} a_{n}^{-1} \gamma_{n} \tag{6.2}
\end{equation*}
$$

The first part of it

$$
Q_{1}=\sum_{n} a_{n} \beta_{n}
$$

commutes with quasi-classical e_{n}, f_{n}, h_{n} currents, constructed in quantum case from elements $a_{n}, \beta_{n}, \gamma_{n}$ by formulae (3.7).

The second part of Hamiltonian

$$
Q_{0}=\sum_{n} a_{n}^{-1} \gamma_{n}
$$

can be treated as perturbation.
Consider the grading of $\beta-\gamma-a$ system

$$
\operatorname{deg} a_{n}=1, \quad \operatorname{deg} a_{n}^{-1}=-1, \quad \operatorname{deg} \beta_{n}=\operatorname{deg} \gamma_{n}=0
$$

According to these rules we have $\operatorname{deg} Q_{0}=-1, \operatorname{deg} Q_{1}=1$.
Let us introduce the adjoint action as improved Poisson brackets

$$
a d_{A} B:=\{A, B\}-(\operatorname{deg} A \operatorname{deg} B) A B .
$$

With respect to the adjoint action operators Q_{1} and Q_{0} satisfy Serre relations for the nilpotent part of $s \hat{l}_{2}$ algebra

$$
a d_{Q_{0}}^{3} Q_{1}=a d_{Q_{1}}^{3} Q_{0}=0
$$

We consider the dynamical system with phase space being that of zero-degree polynomials lattice fields constructed from lattice ($\beta-\gamma-a$)-system and the Hamiltonian (6.2).

Our purpose now is to prove the integrability of this system and calculate the integrals of motion (IM), in analogy with the continuous case, considered in [4]. We will also give an interpretation of the model in terms of lattice analogues of the NLS hierarchy:

Let us start from an observation that the field h_{n} is a "zero mode" because it is conserved under the system evolution:

$$
\dot{h}_{n}=a d_{H}\left(h_{n}\right)=0 .
$$

This implies that it is necessary to reduce our dynamical system and exclude the field h_{n}. We introduce new lattice fields

$$
x_{n}=\beta_{n} a_{n}, \quad y_{n}=\gamma_{n} a_{n}^{-1}
$$

Corresponding Dirac brackets for these fields (up to a sign change) are:

$$
\begin{align*}
& \left\{x_{n}, x_{m}\right\}_{D}=-\operatorname{sign}(n-m) x_{n} x_{m}, \\
& \left\{y_{n}, y_{m}\right\}_{D}=-\operatorname{sign}(n-m) y_{n} y_{m}, \tag{6.3}\\
& \left\{x_{n}, y_{m}\right\}_{D}=\operatorname{sign}(n-m) x_{n} y_{m}-\delta_{n m}\left(1+x_{n} y_{m}\right) .
\end{align*}
$$

In these variables Hamiltonian has the form

$$
H=\sum_{n}\left(x_{n}+y_{n}\right)
$$

Poisson algebra (6.3) strongly reminds that of from the Feigin-Enriquez model (FE) [26]. The only difference is the $\delta_{n m}$ term in $x-y$ sector. This central term changes IM and
dynamics drastically. Nevertheless, cohomological structure of the space of IM appears to be rigid with respect to such a deformation of Poisson brackets, as we are going to show now.

Consider the following one-parameter deformation of the Poisson structure of FE model:

$$
\begin{align*}
& \left\{x_{n}, x_{m}\right\}_{D}=-\operatorname{sign}(n-m) x_{n} x_{m}, \\
& \left\{y_{n}, y_{m}\right\}_{D}=-\operatorname{sign}(n-m) y_{n} y_{m}, \tag{6.4}\\
& \left\{x_{n}, y_{m}\right\}_{D}=\operatorname{sign}(n-m) x_{n} y_{m}-\delta_{n m}\left(\lambda+x_{n} y_{m}\right)
\end{align*}
$$

with Hamiltonian

$$
H=Q_{+}+Q_{-}
$$

where $Q_{+}=\sum_{n} x_{n}$ and $Q_{-}=\sum_{n} y_{n}$. For the lattice variables x_{n} and y_{n} we have

$$
\operatorname{deg} x_{n}=1, \quad \operatorname{deg} y_{n}=-1
$$

For $\lambda=0$ we obtain FE model and for $\lambda=1$ we come to our initial algebra (6.3) corresponding to perturbed lattice WZW (or lattice NLS) model. It should be mentioned that all the Poisson algebras \mathcal{A}_{λ} defined by bracket (6.4) are pairwise isomorphic for $\lambda \in(0, \infty)$.

In the paper [26] IM for the system (6.4) for $\lambda=0$ have been expressed in terms of cohomology classes. Standard arguments give that the ring of cohomologies does not change under the infinitesimal variation of basic algebraic structure (6.4) on the phase space. The isomorphism of algebras $\mathcal{A}_{\lambda \neq 0}$ allows us to replace an infinitesimal deformation by the finite one. Thus, the rings of cohomologies for FE model and perturbed lattice WZW model are the same.

6.2. Interpretation of the model in terms of the NLS hierarchy

Before the systematic study of IM we give a brief description of our model in terms of lattice analogue of the NLS hierarchy. Let us first change the notations from x_{n}, y_{n} to the standard ones adopted in the theory of NLS equation: $x_{n} \equiv \psi_{n}, y_{n} \equiv \bar{\psi}_{n}$. We find that Eqs. (6.3) are exactly the first Poisson structure of the lattice NLS hierarchy:

$$
\begin{aligned}
& \left\{\psi_{n}, \psi_{m}\right\}=-\operatorname{sign}(n-m) \psi_{n} \psi_{m} \\
& \left\{\bar{\psi}_{n}, \bar{\psi}_{m}\right\}=-\operatorname{sign}(n-m) \bar{\psi}_{n} \bar{\psi}_{m} \\
& \left\{\psi_{n}, \bar{\psi}_{m}\right\}=-\operatorname{sign}(n-m) \psi_{n} \bar{\psi}_{m}-\left(1+\psi_{n} \bar{\psi}_{n}\right) \delta_{n, m}+\delta_{m, n+1} .
\end{aligned}
$$

This bracket can be represented as a sum of two compatible Poisson structures, $\{\}=$, $\{,\}_{1}+\{,\}_{0}$, where $\{,\}_{1}$ is defined as

$$
\begin{aligned}
& \left\{\psi_{n}, \psi_{m}\right\}_{1}=-\operatorname{sign}(n-m) \psi_{n} \psi_{m} \\
& \left\{\bar{\psi}_{n}, \bar{\psi}_{m}\right\}_{1}=-\operatorname{sign}(n-m) \bar{\psi}_{n} \bar{\psi}_{m} \\
& \left\{\psi_{n}, \bar{\psi}_{m}\right\}_{1}=\operatorname{sign}(n-m) \psi_{n} \bar{\psi}_{m}-\delta_{n m}\left(1+\psi_{n} \bar{\psi}_{m}\right)
\end{aligned}
$$

and $\{,\}_{0}$ is defined as

$$
\left\{\psi_{n}, \bar{\psi}_{n+1}\right\}_{0}=1
$$

One can easily find the first two integrals of the hierarchy

$$
I_{0}=\sum_{n} \ln \left(1+\psi_{n} \bar{\psi}_{n}\right), \quad I_{1}=\sum_{n}\left(\psi_{n} \bar{\psi}_{n+1}\right)
$$

Two compatible brackets and two integrals of motion define a bi-Hamiltonian system, and hence, an infinite family of conservation laws. In continuous limit the few first IMs become

$$
\begin{aligned}
& I_{0} \rightarrow N \text { (number of particles) } \\
& I_{1}-I_{0} \rightarrow P \text { (momentum) } \\
& I_{2}-2 I_{1}+I_{0} \rightarrow \text { (NLS Hamiltonian) }
\end{aligned}
$$

where

$$
I_{2}=\sum_{n}\left(\frac{\psi_{n}^{2} \bar{\psi}_{n+1}^{2}}{2}-\psi_{n} \bar{\psi}_{n+2}\right)
$$

7. Embedding of the lattice NLS hierarchy into the lattice KP hierarchy

7.1. Lattice Toda theories and lattice analogue of the non-linear W_{∞} algebra

We briefly remind here, how Feigin's construction of lattice W_{N}-algebra can be extended to the case of $N=\infty$ [8]. We consider here only the classical case.

Consider the set of lattice variables $\left\{a_{n}^{j}\right\}_{j=1}^{N}$ with the Poisson structure

$$
\begin{align*}
& \left\{a_{n}^{i}, a_{m}^{i}\right\}=\operatorname{sign}(m-n) a_{n}^{i} a_{m}^{i} \\
& \left\{a_{n}^{i}, a_{n}^{i+1}\right\}=-\frac{1}{2} a_{n}^{i} a_{n}^{i+1}, \quad\left\{a_{n}^{i}, a_{m}^{i+1}\right\}=-\frac{1}{2} \operatorname{sign}(m-n) a_{n}^{i} a_{m}^{i+1} \tag{7.1}
\end{align*}
$$

Following the general scheme, we define the gradation on the phase space:

$$
\operatorname{deg}\left(a_{n}^{i}\right)=1, \quad \operatorname{deg}\left(\left(a_{n}^{i}\right)^{-1}\right)=-1 \quad i=1, \ldots, N-1
$$

Let Π_{n} be the space of the finite-difference polynomials of degree n. The Hamiltonian of the lattice Toda theory associated with the finite-dimensional Lie algebra $s l(n)$ is given by

$$
\begin{equation*}
H_{s l_{n} T o d a}=\sum_{i=1}^{n-1} Q_{i} \tag{7.2}
\end{equation*}
$$

where $Q_{i}=\sum_{n} a_{n}^{i}$ are the corresponding screening charges (SC). Through the tedious but straightforward calculation one can see that Q_{i} satisfy Serre's relations in $n_{+}(s l(n))$. The space of the integrals of motion is given by the intersection of the kernels

$$
\begin{equation*}
I_{\text {lattice }}(g)=\bigcap_{i=1}^{N-1} \operatorname{Ker}\left(a d_{Q_{i}}\right) \cap \Pi_{0} \tag{7.3}
\end{equation*}
$$

It forms a Poisson algebra which can be viewed as a proper lattice analogue of the Adler-Gel'fand-Dickey, or W_{N}, algebra. We will denote this algebra as $L W_{N}$. In the papers $[7,8,42]$ explicit calculations have been done for the $s l(3)$ case. In general, it was shown to be spanned by $N-1$ generators $L_{n} \equiv W_{n}^{(2)}, W_{n}^{(3)}, \ldots, W_{n}^{(N)}$. Inductive limit $N \rightarrow \infty$ gives the lattice analogue of the classical non-linear W_{∞}-algebra.

To construct the generators $W_{n}^{(i)}$ we will use more convenient variables than a_{n}^{i}. First of all, we exclude the non-zero degree components of the phase space by using as the basic variables the lattice analogues of the Cartan currents of $s l_{N}$, associated with simple roots $\alpha_{1}, \alpha_{2}, \ldots$:

$$
p_{n}^{i}=a_{n}^{i}\left(a_{n+1}^{i}\right)^{-1}
$$

Calculations with these variables turned out to be rather tedious [7], so this time we choose another basis in the root system of $s l_{N}$ and use Weyl chamber generators $\alpha_{1}, \alpha_{1}+\alpha_{2}$, $\alpha_{1}+\alpha_{2}+\alpha_{3}, \ldots$.

$$
\begin{align*}
k_{n}^{1} & =p_{n}^{1} \\
k_{n}^{2} & =p_{n}^{1} p_{n}^{2} \\
k_{n}^{3} & =p_{n}^{1} p_{n}^{2} p_{n}^{3} \tag{7.4}\\
& \vdots \\
k_{n}^{N-1} & =p_{n}^{1} p_{n}^{2} \ldots p_{n}^{N-1}
\end{align*}
$$

The following combinations turn out to be the best for our purposes:

$$
\begin{aligned}
\alpha_{n}^{1} & =\sum_{i=1}^{N-1} k_{n}^{i} \\
\alpha_{n}^{2} & =\sum_{i=1}^{N-1} \sum_{j=i+1}^{N-1} k_{n}^{i} k_{n+1}^{j}, \\
& \vdots \\
\alpha_{n}^{p} & =\sum_{\{u(l)\}} \prod_{j=1}^{p-1} k_{n+j}^{u(j)}
\end{aligned}
$$

where the summation goes over all possible sets $\{u(l)\}$ such that $N-1 \geq u(l+1)>u(l) \geq$ 1. They form a quadratic Poisson algebra

$$
\begin{equation*}
\left\{\alpha_{n}^{p}, \alpha_{n+m}^{q}\right\}_{1}=\theta_{m}^{p q}\left(-\alpha_{n}^{p} \alpha_{n+m}^{q}+\alpha_{n}^{q+m} \alpha_{n+m}^{p-m}\right) \tag{7.5}
\end{equation*}
$$

where $\theta_{m}^{p q}=\theta(p-m) \theta(q-p+m-1)$ and $\theta(x)$ is a step function

$$
\theta(x)= \begin{cases}1, & x \geq 0 \\ 0, & x<0\end{cases}
$$

The index 1 of the bracket indicates that this is the analogue of first Gel'fand-Dickey (GD) structure for the $N-\mathrm{KdV}$ hierarchy. Generators of $L W_{N}$ form the analogue of the
second GD structure. It turns out that quite parallel to the continuous case there are Miura transformation, relating the α-fields (7.5) with the generators of $L W_{N}$. Direct calculation (the most convincing method of proof) shows that the following fields commute with all screening operators $(i=2,3, \ldots, N)$:

$$
\begin{align*}
W_{n}^{(i)} & =\frac{\alpha_{n+1}^{i-1}+\alpha_{n}^{i}}{\left(1+\alpha_{n}^{1}\right) \ldots\left(1+\alpha_{n+i-1}^{1}\right)}, \quad i=2,3, \ldots N-1, \\
W^{(N)} & =\frac{\alpha_{n+1}^{N-1}}{\left(1+\alpha_{n}^{1}\right) \ldots\left(1+\alpha_{n+N-1}^{1}\right)} . \tag{7.6}
\end{align*}
$$

In the limit $N \rightarrow \infty$ one find the brackets between the fields $W^{(i)}$. Putting $W^{(1)} \equiv 1$, we have

$$
\begin{align*}
\left\{W_{n}^{(p)}, W_{n+m}^{(q)}\right\}= & W_{n}^{(p)} W_{n+m}^{(q)}\left(1-W_{n+m-1}^{(2)}-W_{n+p}^{(2)}\right)-W_{n}^{(q+m)} W_{n+m}^{(p-m)} \\
& -W_{n}^{(p+1)} W_{n+m}^{(q)}+W_{n}^{(p)} W_{n+m-1}^{(q+1)} \quad \text { for } m \leq p, \quad q+m \geq p+1, \\
\left\{W_{n}^{(p)}, W_{n+m}^{(q)}\right\}= & W_{n}^{(p)} W_{n+m}^{(q)}\left(-W_{n+m-1}^{(2)}+W_{n+m+p}^{(2)}\right) \\
& -W_{n}^{(p)} W_{n+m-1}^{(q+1)}-W_{n}^{(p)} W_{n+m}^{(q+1)} \quad \text { for } m \geq 1, \quad p \geq m+q+1 \\
\left\{W_{n}^{(p)}, W_{n+p+1}^{(q)}\right\}= & -W_{n}^{(p)} W_{n+p}^{(2)} W_{n+p+1}^{(q)}-W_{n}^{(p+q)} \\
& +W_{n}^{(p+1)} W_{n+p+1}^{(q)}+W_{n}^{(p)} W_{n+p}^{(q+1)}, \\
\left\{W_{n}^{(p)}, W_{n+p-q}^{(q)}\right\}= & -W_{n}^{(p)} W_{n+p-q-1}^{(2)} W_{n+p-q}^{(q)}+W_{n}^{(p)} W_{n+p-q-1}^{(q+1)} \quad \text { for } p \geq q+1, \\
\left\{W_{n}^{(p)}, W_{n}^{(q)}\right\}= & -W_{n}^{(p)} W_{n+p}^{(2)} W_{n}^{(q)}+W_{n}^{(p+1)} W_{n}^{(q)} \quad \text { for } q \geq p+1, \tag{7.7}
\end{align*}
$$

Notice that the bracket (7.7) can be written in the form

$$
\{,\}_{(7.7)}=-\{,\}_{1}+\{,\}_{2}
$$

where $\{,\}_{1}$ is defined by Eq. (7.5). Concluding this section, we would like to highlight several points:

- Distinct from continuous case, for any finite N, algcbra $L W_{N}$ does not form a subalgebra of $L W_{\infty}$. It forms' only a subspace, defined by restriction $W^{(i)}=0$ for $i \geq N$.
- In continuous case there exists the so-called two-boson realization of KP hierarchy [49], in which W_{∞}-algebra generators are expressed in terms of two $u(1)$ currents. Analogous construction happens to exist on the lattice. Fields forming Poisson algebra (7.7) can be realized in terms of two lattice $u(1)$ currents [8] $u_{n}=t_{2 n}$ and $v_{n}=t_{2 n+1}$, commuting as

$$
\begin{equation*}
\left\{t_{n}, t_{n+1}\right\}=-t_{n} t_{n+1} . \tag{7.8}
\end{equation*}
$$

- Under properly defined continuous limit the brackets 1 and 2 become the corresponding Poisson structures of the KP hierarchy (resp. linear w_{∞} and non-lincar W_{∞} algebras).

7.2. Integrable model associated with $L W A_{+\infty}$ algehra

Define the affine vertex of $\widehat{s l_{N}}$ as $a_{n}^{0}=\prod_{i=1}^{N-1}\left(a_{n}^{i}\right)^{-1}$. The corresponding screening operator associated with the imaginary root of $s l_{N}$ is

$$
Q_{0}=\sum_{n \in \boldsymbol{Z}} a_{n}^{0}
$$

Differential $\hat{Q}=Q_{0}+Q=\sum_{j=0}^{N} Q_{j}$ may be considered as the Hamiltonian of $\widehat{s l_{N}}$-Toda system. According to definitions of the work [30], space of integrals of motion of this system is defined as an intersection

$$
\begin{equation*}
\operatorname{Ker}\left(a d_{Q_{0}}\right) \cap \operatorname{Ker}\left(a d_{Q_{1}}\right) \cap \cdots \cap \operatorname{Ker}\left(a d_{Q_{N-1}}\right) \cap \Pi_{0} / \partial \Pi_{0} \tag{7.9}
\end{equation*}
$$

The word integrals is contained in the last intersection because of obvious isomorphism

$$
\Pi_{0} / \partial \Pi_{0} \cong \Pi_{0}^{i n t} \leftarrow \Pi_{0}: \sum_{n}
$$

Before describing the space (7.9), let us take a look at a simpler problem. It is almost a trivial statement, that a system associated with the pair of brackets $\{,\}_{1}$ and $\{,\}_{2}$ is integrable, with an infinite number of conservation laws in involution. One just has to have two integrals, commuting under both brackets. The simplest choice is [7]

$$
I^{(1)}=\sum_{n} W_{n}^{(2)}, \quad I^{(2)}=\sum\left(\frac{\left(W_{n}^{(2)}\right)^{2}}{2}+W_{n}^{(2)} W_{n+1}^{(2)}-W_{n}^{(3)}\right)
$$

The subsequent procedure is obvious: using the bi-Hamiltonian structure, one can easily obtain the whole series of conservation laws in involution by the recursive procedure. The answer for any N (essentially, including $N=\infty$) can be found in [8]. We rewrite it here for completeness. For a given N, the series is given by

$$
\begin{equation*}
I_{N}^{(k)}=\frac{1}{k} \operatorname{Tr}\left(\mathcal{L}_{N}^{k}\right) \tag{7.10}
\end{equation*}
$$

where Lax matrix \mathcal{L}_{N} is conveniently defined as

$$
\begin{equation*}
\left(\mathcal{L}_{N}\right)_{n, m}^{-1}=\delta_{n, m+1}-W_{n}^{(2)} \delta_{n, m}+W_{n}^{(3)} \delta_{n, m-1}-\cdots+(-1)^{N-1} W_{n}^{(N)} \delta_{n, m-N+1} \tag{7.11}
\end{equation*}
$$

Introducing the translation matrix $\Lambda_{n, m}=\delta_{n, m-1}$ and diagonal matrices $W_{n, m}^{(i)}=W_{n}^{(i)} \delta_{n, m}$ we can write in compact notations

$$
\begin{equation*}
\mathcal{L}_{N}=\Lambda^{-1} \cdot \frac{1}{1-L \cdot \Lambda+W^{(3)} \cdot \Lambda^{2}-\cdots+(-1)^{N-1} W^{(N)} \Lambda^{N-1}} \tag{7.12}
\end{equation*}
$$

It really is the L-operator of our dynamical system, because the evolution equations can be written in the form

$$
\begin{equation*}
\frac{\partial \mathcal{L}_{N}}{\partial t_{p}}=\left[\boldsymbol{A}_{N}^{(p)}, \mathcal{L}_{N}\right] \tag{7.13}
\end{equation*}
$$

where $A_{N}^{(p)}=\left(\mathcal{L}_{N}^{p}\right)_{+}$. Now let us return to our original problern of description of the space (7.9). Obviously, all of the integrals above commute with $Q=\sum_{j=0}^{N} Q_{j}$ by construction (7.3). In addition, direct calculation shows that they also commute with Q_{0}. Notice that of N vertex operators corresponding to $\widehat{s l_{N}}$ we needed only $N-1$ corresponding to simple roots to construct $L W A_{N}$ generators and integrals of motion. In principle, we could pick up any $N-1$ vertex operators, and follow the same steps. Thus, the space of integrals of motion for $\widehat{s l_{N}}$ lattice Toda system can be described in terms of generating functions as

$$
\begin{equation*}
R_{\widehat{S L_{N}}}\left(\lambda_{1}, \ldots, \lambda_{N}\right)=\sum_{i=1}^{N} R_{S L_{N}}^{(i)}\left(\lambda_{i}\right) \tag{7.14}
\end{equation*}
$$

where $R_{S L_{N}}^{(i)}\left(\lambda_{i}\right)=\sum_{s=0}^{\infty} I^{(s)} \lambda_{i}^{s}$ is the generating function for the conservation laws of the lattice $N-\mathrm{KdV}$ hierarchy, associated with the roots
$\left\{\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \ldots, \widehat{\boldsymbol{\alpha}_{i}}, \ldots, \boldsymbol{\alpha}_{N}\right\}$.

7.3. Embedding of the Lattice NLS into the lattice KP hierarchy

One can prove by direct calculation that evolution of the fields

$$
\begin{equation*}
M_{n}^{p}=\frac{e_{n} f_{n+p}}{h_{n} h_{n+1} \ldots h_{n+p-1}} \tag{7.15}
\end{equation*}
$$

is consistent with the lattice KP hierarchy (7.13) under the identification

$$
\left(\mathcal{L}_{\infty}\right)_{n, n+p}=(-1)^{p} M_{n}^{p+1}
$$

Notice, however, that as defined by Eq. (7.15), variables $\left\{M_{n}^{p}\right\}_{p=1}^{\infty}$ are not functionally independent. There is a set of quadratic relations, such as, e.g. $M_{n}^{2} M_{n+1}^{2}=M_{n}^{3} M_{n+1}^{1}$, which may be interpreted as Plucker relations of some Grassmanian. Two independent generators of the whole family are M_{n}^{0} and M_{n}^{1}, encountered earlier in Section 5. It is easy to check that they as well form FTV algebra, under the identification

$$
A_{2 n}=M_{n}^{0}, \quad A_{2 n+1}=M_{n}^{1}
$$

Thus, one may view the the embedding of the lattice NLS into the lattice KP as a non-Abelian two field realization of lattice KP.

8. Concluding remarks

In this paper we have studied the lattice analogues of various conformal theories as well as their integrable perturbations. We have found that when described in proper invariant terms, many of the well-known continuous constructions have their match on the lattice. We have explicitly described for the first time lattice analogues of the DS reduction and of the Sugawara construction. In the framework of the lattice WZW the lattice Sugawara energy-momentum tensor has been constructed. We have described lattice Maxwell-Bloch
system as a "chiral perturbation" of the lattice WZW model by the field of spin one. Evolution equations under the integrals of motion of this system have been found to form an integrable hierarchy, which is naturally perceived as a lattice analogue of the NLS hierarchy. Finally, we have found an embedding of this lattice NLS hierarchy into the lattice KP hierarchy, again in complete analogy with the continuous case.

One of the problem that remained open is giving a geometrical description of the lattice MB system using the Lie group cosets, in analogy with continuous case [4].

We have described the spaces of IMs for several integrable systems, using Lax representation and bi-Hamiltonian structure. It would be extremely interesting to compare the results of cohomological [26] and St.-Petersburg [22,33] calculations with our answers. Recently Kryukov calculated the first three integrals in the quasi-classical limit of lattice sine-Gordon theory [39], using the generating function from the paper of Faddeev and Volkov [22]. After careful comparison, we found that his integrals of motion can be expressed in terms of certain linear combinations of ours.

Acknowledgements

We are grateful to B. Feigin, A. Belavin and the members of Field Theory Seminar at Landau Institute: A. Kadeishvili, S. Kryukov, M. Lashkevich, S. Parkhomenko, V. Postnikov and Ya. Pugay. A.B. thanks V. Rubtsov, T. Takebe, V. Drinfeld, S. Novikov, I. Krichever and S. Pakulyak for fruitful discussions and valuable comments. KC is indebted to L.D. Faddeev and L. Bonora for interesting comments and C. Teleman for cohomological help.

Authors are especially grateful to A . Volkov for pointing out an error in details of formula (5.2) in an earlier version of the paper.

References

[1] A. Alekseev, L. Faddeev and M. Semenov-Tian-Shansky, The unravelling of quantum group symmetry it the WZNW model preprint CERN-5981/91 (January 1991).
[2] A. Alekseev, L. Faddeev and M. Semenov-Tian-Shansky, Hidden quantum groups inside Kac-Moody algebra, Comm. Math. Phys. 149 (1992) 335.
[3] A. Alekseev and S. Shatashvili, Quantum groups and WZNW models, Comm. Math. Phys. 133 (1990) 353.
[4] A. Antonov, A.A. Belov and B. Feigin, Geometrical description of the local integrals of motion of the Maxwell-Bloch equation, preprint LANDAU-94-TMP-8, hep-th/9501 128.
[5] O. Babelon, Exchange formula and lattice deformation of the Virasoro algebra, Phys. Lett. B 238 (1990) 234.
[6] O. Babelon and L. Bonora, Quantum Toda theory, Phys. Lett. B 253 (1991) 365.
[7] A. Belov and K. Chaltikian, Lattice analogues of W-algebras and classical integrable equations, Phys. Lett. B 309 (1993) 268.
[8] A. Belov and K. Chaltikian, Lattice analogue of the W-infinity algebra and discrete KP-hierarchy, Phys. Lett. B 317 (1993) 64.
[9] A. Belov and K. Chaltikian, Lattice Virasoro from lattice Kac-Moody, Phys. Lett. B 317 (1993) 73.
[10] B. Blok, Classical exchange algebras in the Wess-Zumino-Witten model, Phys. Lett. B 233 (1989) 359.
[11] R. Bott and L. Tu, Differential Forms in Algebraic Topology (Springer, New York, 1982).
[12] P. Bouwknegt, J. McCarthy and K. Pilch, Quantum group structure in the Fock space resolutions of $s l(n)$ representations, Comm. Math. Phys. 131 (1990) 125.
[13] P. Bouwknegt and K. Schoutens, W-symmetry in CFT, Phys. Rep. 223 (1993) 183
[14] L. Dickey, Soliton equations and Hamiltonian systems, Adv. Ser. Math. Phys., Vol. 12 (World Scientific, Singapore, 1990).
[15] V1. Dotsenko and V. Fateev, Conformal algebra and multipoint correlation functions in 2D statistical models, Nucl. Phys. B 240 [FS12] (1984) 312.
[16] V. Drinfel'd and V. Sokolov, J. Soviet. Math. 30 (1985) 1975.
[17] L. Faddeev, On the exchange matrix for WZNW model, Comm. Math. Phys. 132 (1992) 131.
[18] L. Faddeev, Current-like variables in massive and massless integrable models, Lectures at the International School of Physics Enrico Fermi, Varenna (1994) hep-th/9408041.
[19] L. Faddeev, Algebraic Aspects of Bethe Ansatz, Lectures at Stony-Brook ITP-SB-94-1 1 (March, 1994).
[20] L. Faddeev and L. Takhtadjan, Liouville model on the lattice, Lecture Notes in Phys. 246 (1986) 66.
[21] L. Faddeev and L. Takhtadjan, Hamiltonian Methods in the Theory of Solitons (Springer, Berlin, 1987).
[22] L. Faddeev and A. Volkov, Abelian current algebra and the Virasoro algebra on the lattice, Phys. Lett. B 315 (1993) 311.
[23] F. Falceto and K. Gawedzki, Lattice Wess-Zumino-Witten model and quantum groups, J. Geom. Phys. 11 (1993) 251.
[24] V. Fateev and S. Lukyanov, Conformally invariant models of two-dimensional quantum field theory with Z_{n}-symmetry, Internat. J. Modem. Phys. A 3 (1988) 507.
[25] B. Feigin, Talk at St.-Petersburg conference on Geometry and Physics (September 1992).
[26] B. Feigin, B. Enriquez, Integrals of Motion of Classical lattice sin-Gordon system, hep-th/9409075.
[27] B. Feigin and E. Frenkel, Affine Kac-Moody algebras and bosonization, In: Physics and Mathematics of Sirings, V. G. Knizhnik Memorial Volume, eds. L. Brink et al. (World Scientific, Singapore, 1990) p. 271.
[28] B. Feigin and E. Frenkel, Free field resolutions in affine Toda field theories, Phys. Lett. B 276 (1992) 79.
[29] B. Feigin and E. Frenkel, Integrals of motion and quantum groups, Yukawa Inst. preprint YITP/K-1036 (November 1993).
[30] B. Feigin and E. Frenkel, Kac-Moody groups and integrability of soliton equations (November 1993, revised November 1994).
[31] G. Felder, BRST approach to minimal models, Nucl. Phys. B 317 (1989) 215; erratum.
[32] M. Freeman and P. West, On the relation between integrability and infinite-dimensional algebras, in: Pathways to Fundamental Theories, eds. L. Brink and R. Marnelius (World Scientific, Singapore, 1993) p. 21 .
[33] E. Frenkel, W-algebras and Langlands-Drinfeld correspondence, in Ref. [34, p.433].
[34] J. Fröhlich et al., eds., New Symmetry Principles in Quantum Field Theory (Plenum Press, New York, 1992).
[35] A. Gerasimov, Quantum Group Structure in Minimal Models, Moscow, preprint ITEP-91-22 (1991).
[36] A. Goddard and K. Olive, Kac-Moody and Virasoro Algebras in relation to quantum physics, Internat. J. Modem Phys. A 1 (1986) 303.
[37] C. Gomés and G. Sierra, Quantum group symmetry of rational conformal field theories, Geneva University, preprint UGVA-DPT-90/04-669 (1990).
[38] V. Korepin, G. Izergin and N. Bogoliubov, Quantum Inverse Scattering Method, Correlation Functions and Algebraic Bethe Ansatz (Cambridge University Press, Cambridge, 1992).
[39] S. Kryukov, Integrals of Motion of Classical Lattice sine-Gordon model, Landau Inst. preprint (March, 1995) (in Russian).
[40] P. Lax, Lectures in Appl. Math. 15 (1974) 85.
[41] G. Moore and N. Seiberg, Taming the conformal zoo, Phys. Lett. B 220 (1989) 422.
[42] Ya. Pugai, Lattice W algebras and quantum groups, Theoret. Math. Phys. 100 (1994) 132.
[43] N. Reshetikhin and M. Semenov-Tian-Shansky, Central extensions of quantum current groups, Lett. Math. Phys. 19 (1990) 133.
[44] R. Sasaki and I. Yamanaka. Virasoro Algebra, Vertex operators, Quantum sine-Gordon and solvable quantum field theories, Adv. Stud. Pure Math. 16 (1988) 271.
[45] A. Volkov, Miura transformation on a lattice, Theoret. Math. Phys. 74 (1988) 135.
[46] A. Volkov, Quantum Volterra model, Phys. Lett. A 167 (1992) 345.
[47] M. Wakimoto, Fock representations of the affine Lie algebra $A_{1}^{(1)}$, Comm. Math. Phys. 104 (1986) 605.
[48] E. Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989) 351.
[49] F. Yu and Y.-S. Wu, Nonlinear W_{∞} current algebra in the $S L(2, R) / U(1)$ coset model, Phys. Rev. Lett. 68 (1992) 2996.

[^0]: ${ }^{1}$ E-mail: antonov@1pthe.jussieu.fr. Supported in part by International Science Foundation (Grant M6N000) and Russian Basic Research Foundation (Grant 95-02-05985a).
 ${ }^{2}$ Supported in part by International Science Foundation (Grant N89000).
 ${ }^{3}$ E-mail: karen@quantum.stanford.edu.

[^1]: ${ }^{4}$ The exchange relations between ξ and original variables are $B \boldsymbol{\xi}=q \boldsymbol{\xi}$ and $\Gamma \boldsymbol{\xi}=q^{-1} \boldsymbol{\xi} \Gamma$.

[^2]: ${ }^{5}$ In quantum case, however, the central charge becomes non-zero due to quantum corrections.

